
narratr

a language for text adventures

THE TEAM

PROJECT MANAGER Shloka Kini

LANGUAGE GURU Nivvedan Senthamil Selvan

SYSTEM ARCHITECT Yelin Hong

SYSTEM INTEGRATOR Jonah Smith

TESTY PERSON Cecilia Watt

-->> move right

narratr

-->> tell me more

WHAT WE WANTED TO DO

Text-based adventure games are brilliant. We love
them, and so should you.

A language that makes it easy to create such games
can help in the revival of the glorious days.

A structured boilerplate for text-based games building
upon a general purpose programming language.

BUZZWORDS

Literary

Pythonic

Object-oriented

Lightweight

Intuitive

WHAT WE WANTED TO DO

What is a generalizable quality of text adventures?

● Multiple Scenes
● Interaction with scenes
● Scene transitions on player input

Remind you of something?

WITHOUT ANY FURTHER ADO

% Here’s the Hello, World! program

scene $1 {

setup:

say “Hello, World!”

win

action:

cleanup:

}

start: $1 % Optional

WITHOUT ANY FURTHER ADO

% Here’s the Hello, World! program

scene $1 {

setup:

say “Hello, World!”

win

action:

cleanup:

}

start: $1 % Optional

Any general programming
language construct can go
here.

WITHOUT ANY FURTHER ADO

% Here’s the Hello, World! program

scene $1 {

setup:

if not false == true:

say “Hello, World!”

win

action:

cleanup:

}

start: $1 % Optional

See?
Looks like Python,
doesn’t it?

NARRATR

a language designed to build text-

based adventure games

The first text-adventure game was
written in 1975 and was distributed
through ARPANET. In the late 70s and
early 80s, when most home computers
had limited graphics capabilities, text-
based games reached their peak
popularity.

By the 90s, it was an art form in decline.

INTERACTIVE FICTION

The success of a text-based game
hinges almost entirely on the
strength of the game’s storytelling.

Interactive fiction demands
readers to take an active role in the
telling of a story.

Text forces readers to exercise the
imagination.

INTERACTIVE FICTION

SYNTACTIC CONSTRUCTS

1.

WHAT A GAME IS MADE OF

scenes items

RUNNING EXAMPLE

scene $1{

 setup:

 exposition "You are in a room. It has
a key."

 moves right($2)

 action:

 if response == "pick up key":

 pocket.add("key", key(1))

 else:

 "There's a key on the floor. What
do you want to do with it?"

 cleanup:

}

item key(keyid){

 id is keyid

}

scene $2{

 setup:

 exposition "Now you are in a new room.
In the corner, you see a locked door."

 action:

 if response == "open door":

 if pocket.has("key"):

 say "You unlocked the door."

 win "You won!"

 else:

 say "You don't have the key."

 cleanup:

}

SCENES

● They are numbered
● Have three components sub-blocks to them

○ Setup
○ Action
○ Cleanup

● All or any of them can be empty.
● Action block executes in an REPL
● Player can transition using the move command
● Programmer can transition with a moveto

statement

ITEMS

● They’re like classes (or should we say structs?)
● Can create objects of items
● Can set and access attribute values
● Can be carried around in your pocket

item key (keyid) {

id is keyid

}

POCKET

● Global container for the player’s inventory
● Can add, remove and update items in pocket

● The items in pocket can be accessed and modified
by all scenes

● Pocket can be used to simulate function calls

LANGUAGE OVERVIEW

say / exposition statements
win / lose statements

if statments
while loops

moves declaration
moveto statement

LANGUAGE OVERVIEW

assignment statements
is operator
god modifier
creating item objects

k is key(1)

GOD

Variables persist in scenes and cannot be reinitialized.

ARCHITECTURE

2.

HOW TO COMPILE AND RUN

● python narratr.py helloworld.ntr
○ You can add -t after narratr.py if you want to print out the AST.
○ This instruction produces helloworld.ntr.py

● python helloworld.ntr.py
○ This executes the compiled output.

SYSTEM ARCHITECTURE

helloworld.ntr
scene $1 {

setup:
say "Hello, World!"

 win
action:
cleanup:

}

scanner and parser

SYSTEM ARCHITECTURE

code generator

AST of helloworld.ntr:

SYSTEM
ARCHITECTURE

80 lines of Python
code are generated
from 9 lines of
narratr code

helloworld.ntr.py

UNDER THE HOOD

ENVIRONMENT

3.

RUNTIME ENVIRONMENT

● Python 2.7+ (not Python 3) interpreter

● Scenes, Items → Python classes

● User interface challenges
○ Response normalization

■ MOVE: left → move left

RUNTIME ENVIRONMENT

main() s_1.setup() s_1.action() s_1.cleanup() s_2.setup() etc...

main() s_1.setup() s_1.action() s_1.cleanup()

s_2.setup() s_2.action() s_2.cleanup()

etc...

vs.

runtime activation tree

DEVELOPMENT ENVIRONMENT

● Local systems (Mac OS X)
● Sublime Text and TextMate
● Python 2.7.9
● Git and GitHub
● Testing tools (examine.py, narratr.py -vti, nosetests)

MANAGEMENT

4.

PROJECT MANAGEMENT

● Written project plan
○ Week-by-week
○ Individual tasks
○ Buffer time
○ Weekly Meetings

COMPILER TOOLS

5.

COMPILER TOOLS

Python Lex-Yacc (PLY)

● Quite easy to use and well documented with
examples.

● Integrates seamlessly with Python
● Dummy/pseudo tokens were not straightforward
● But ... was possible to look at the lex source and

design a workaround.

TESTING & VALIDATION

6.

TESTING

We used an automated test suite, built with Python’s
unittest framework as well as nose.

We tested that programs would compile and print
appropriate output.

We tested that faulty code would have errors.

STATISTICS

69 tests

2031 lines of test code

5074 total lines

40% of our code is tests

coverage

100% narratr.py
91% lexer.py
88% parser.py
90% node.py
80% codegen.py
81% symtab.py

A DEMONSTRATION

7.

LESSONS LEARNED

● When in doubt, always look at the grammar.
● There’s value in coding together in the same room.
● Parallelize work when possible.
● Everyone should participate in writing tests.
● Be confident and trust your prior self.

-->> You win!

