natratis

a language for text adventures

PROJECT MANAGER

LANGUAGE GURU

ONAS T M- =D CHAFTE BhET

SYSTEM INTEGRATOR

BRI ST Y SR RS O

el 3 H Dyl RO ANY

Shloka Kini

Nivvedan Senthamil Selvan
Yelin Hong

Jonah Smith

Cecilia Watt

-->> move right

natratis

-->> tell me more

g WHAT WE WANTED TQ DO .

Text-based adventure games are brilliant. We love
them, and so should you.

A language that makes it easy to create such games
can help in the revival of the glorious days.

A structured boilerplate for text-based games building
upon a general purpose programming language.

- BUZZWORDS

Pythonic o
Intuitive

Object-oriented

Lightweight Literary

g WHAT WE WANTED TQ DO .

What is a generalizable quality of text adventures?

® Multiple Scenes
® [nteraction with scenes
® Scene transitions on player input

Remind you of something?

g WLET HOUHE=R N YR TREEE RE DO

% Here’s the Hello, World! program
scene $1 {
setup:
say “Hello, World!”
win
action:
cleanup:

}
start: $1 % Optional

g WET H@BIE= A NS TTREEEB L = D 6) -

% Here’s the Hello, World! program
scene $1 {
setup:

say “Hello, World!” | Anygeneral programming
: language construct can go

Win here.

action:
cleanup:

}
start: $1 % Optional

)

WET H@BIE= A NS TTREEEB L = D 6) -

%4 Here’s the Hello, World! program

scene $1

{

setup:

if

win

not false == true:
say ‘“Hello, World!”

action:

cleanup:

¥

start: $1 % Optional

See?
Looks like Python,
doesn’tit?

g NARRATR -

a language designed to build text-
based adventure games

cuuND THESE TREASLRES 1.
A NECKLACE SOME KEYS
H PERRL JEWELRY
LA #1088 BILL AN EMERALT
A MAGIC CARFET A MAGIC WAND
SOME ELF FOOD AN OLD GUN

CAVE ENTRANCE WHICH LEADS TO:
CAVE |
CAVE 94
SOME MORE» TYPE 1, ELSE THPE 27 2
5 ARE YOURS TO KEEP, GOOD LUCK 1!

> INTERACTIVE FICTION g

AL
A G0
A BLAL

The first text-adventure game was
written in 1975 and was distributed
through ARPANET. In the late 70s and
early 80s, when most home computers
had limited graphics capabilities, text-
based games reached their peak
popularity.

By the 90s, it was an art form in decline.

The success of a text-based game
hinges almost entirely on the
strength of the game’s storytelling.

Interactive fiction demands
readers to take an active role in the
telling of a story.

Text forces readers to exercise the
Imagination.

TOx.

> INTERACTIVE FICTION g

HEART L,

Galley

Shipping Carton
Nutrimat

Marvin's

Pantry
wmo-fusion Chisel

s it's just not good enough to be the ki

KING ARTHUR'S NIGHT OUT

Written by Mikko Vuworinen (mvuorinefcc.helsinki.t
Release 2:; Compiled with Alan 2.8

nirance Hall

uge tapestries decorate the walls of this big entra

pads to the other parts of the castle and eventuall
th.

Guinevere is here watching you very closely.

SYNTACTIC CONSTRUCTS

> WD TR GRS MADE OF e

am st
\‘l Upane
L'-'lliﬂ‘

QL m

: i
'v \l\uu‘ﬁ 3
=

scenes

g RUNNING EXAMPILE -

s‘cene LSl | scene $2{

Setups setup:

exposition "You are in a room. It has

exposition "Now you are in a new room.
a key."

In the corner, you see a locked door."

moves right ($2) deEitont:

action: if response == "open door":

if response == "pick up key": e ciee e SRt IEVET

pocket.add ("key", key(l)) say "You unlocked the door."

else: win "You won!"

ViNaEe@l g SeruE . O clney BElloeiee WNEE CASSTER:
do you want to do with it?"

say "You don't have the key."
cleanup:

cleanup:

item key(keyid) {
id is keyid

> SCENES .

They are numbered

Have three components sub-blocks to them

O Setup
O Action
o0 Cleanup

All or any of them can be empty.

Action block executes in an REPL

Player can transition using the move command
Programmer can transition with a moveto
statement

- T TEMS *

They're like classes (or should we say structs?)
Can create objects of items
Can set and access attribute values

Can be carried around in your pocket

item key (keyid) {
id 1s keyid

* BOCK B -

Global container for the player’s inventory

Can add, remove and update items in pocket

The items in pocket can be accessed and modified
by all scenes

Pocket can be used to simulate function calls

LANGUAGE: .OVERV-IEW

say / exposition statements
win / lose statements
if statments
while loops
moves declaration
moveto statement

g LANGUAGE: .OVERV-IEW

assignment statements
is operator
god modifier

creating item objects

k is key(1)

Variables persist in scenes and cannot be reinitialized.

ARCHITECTURE

. HOW TO COMPILE AND RUN .

e python narratr.py helloworld.ntr

O You can add -t after narratr.py if you want to print out the AST.
O This instruction produces helloworld.ntr.py

e python helloworld.ntr.py

O This executes the compiled output.

SYSTEM ARCHITECTURE

helloworld.ntr

scene $1 {

setup:
say "Hello, World!"

win
action:

cleanup:

scanner and parser

AST of helloworld.ntr:

ock (value: 1) (line num: 1)
setup_block (line num: 2)
suite (value: statements) (line num: 3)
statements (line num: 3)
statement (value: simple) (line num: 3)
simple_statement (value: say) (line num: 3)
say_statement (line num: 3)
testlist (line num: 3)
test (line num: 3)
or_test (line num: 3)
and_test (line num: 3)
not_test (line num: 3)
comparison (line num: 3)
expression (value: term) (line num: 3)
arithmetic_expression (value: term) (value type: string) (line num: 3)
term (value: factor) (value type: string) (line num: 3)
factor (value: power) (value type: string) (line num: 3)
power (value: atom) (value type: string) (line num: 3)
atom (value: Hello, World!) (value type: string) (line num

statement (value: simple) (line num: @)
simple_statement (value: win) (line num: @)
win_statement (value: win) (line num: @)
block (line num: 5)
(line num: 6)

class s_1: helloworld.ntr.py
def __init__(self):
self.__namespace = {}
self.directions = {}

def setup(self):

print 'Hello, World!'
exit(?)
return self.action()

def action(self):
response = "
while True:
response = get_response(self.directions)
if isinstance(response, list):
self.cleanup()
return response[?]

def cleanup(self):
self.__namespace = {}

UNDER THE HOOD

Architecture Diagram

Tokens

Symbol Table

Python Code
narratr Run Script

ENVIRONMENT

L 4

RUNTIME ENVIRONMENT

e Python 2.7+ (not Python 3) interpreter
® Scenes, Items — Python classes

® User interface challenges

O Response normalization
m MOVE: left — move left

> RUNTIME ENVIRONMENT -

runtime activation tree

s_1.setup()]—>[s_1.action() H s_1.cleanup()]—»[s _2.setup()]——> etc...

VS.

s_1.setup()]S[s_1.action()]::[s_1.cleanup()]
\ [s_2.setup()]:[s_2.action()]::[s_2.cleanup()]

etc...

g DEVELOPMEN T sENSATRONMENT -

Local systems (Mac OS X)
Sublime Text and TextMate
Python 2.7.9

Git and GitHub

Testing tools (examine.py, narratr.py -vti, nosetests)

MANAGEMENT

> PROJECT MANAGEMENT .

° ritten project plan
Week-by-week
Individual tasks
Buffer time

Weekly Meetings

oooog

COMPILER TOOLS

% CONPTEERSTOOS -

Python Lex-Yacc (PLY)

® Quite easy to use and well documented with
examples.

® [ntegrates seamlessly with Python

e Dummy/pseudo tokens were not straightforward

® But ... was possible to look at the lex source and
design a workaround.

TESTING & VALIDATION

- T SHEENG »

We used an automated test suite, built with Python'’s
unittest framework as well as nose.

We tested that programs would compile and print
appropriate output.

We tested that faulty code would have errors.

g S CATEST LES .

coverage
69 i 100% narratr.py

91% lexer.py
203 1 lines of test code %

88% parser.py
5074 total lines 90% nOde'PY

40% of our code 1s tests 80% codegen.py

81% symtab.py

A DEMONSTRATION

> LESSONS LEARNED .

When in doubt, always look at the grammar.
There’s value in coding together in the same room.
Parallelize work when possible.

Everyone should participate in writing tests.
Be confident and trust your prior self.

-->> You win!

