
“Never waste any time you
could spend sleeping”

by someone

TEAM TEAM TEAM

Project Manager
Lennart Hardenberg

System Architect
Shangshang Chen

System Integrator
Kofi Boateng

Testing Ninja
Max Weber

Language Guru
Eric Maciel

What is Wikify?

Efficient

to learn

Programming
language

data
processing

Motivation

Frustrated
how hard it
was to work
with data
from
Wikipedia

We see lots of
potential for
journalists and
data hackers
to make use of
it in the future

Project Management

400 Emails
sent =

1/day/person

Github Google Docs &
Google Slides

- num
- string
- bool
- page
- table
- image

Types

Syntactic Constructs

Newline Terminated Language
Keywords:

- for, while, break
- if, else
- func
- end

Syntactic Constructs

func println(string line)
print(line + “\n”)

end

if (cond) if (cond)
… …

else ------> optional end
…

end

Syntactic Constructs

Enough Talk, Show Me Some Wikify

Example 1 - Infobox Example

main()
 page p1
 p1.urlPrompt()
 print(p1.getUrl())
 p1.returnInfobox()
end

Example 2 - Table to Excel
main()
 page p1
 p1.urlPrompt()
 print(p1.getUrl())
 //put things into an excel sheet
 table t1
 t1.url(p1.getUrl())
 t1.getTable(0)
 t1.toExcel("file")
end

Translator architecture

WikiLexer WikiParser Code Generator

main()
 print(“Hello, World\n”)
end

ASTTokens

[@0,0:3='main',<44>,1:0]
[@1,4:5='()',<2>,1:4]
[@2,6:6='\n',<51>,1:6]
[@3,8:12='print',<35>,2:1]
[@4,13:13='(',<3>,2:6]
[@5,14:22='"hello\n"',<50>,2:7]
[@6,23:23=')',<4>,2:16]
[@7,24:24='\n',<51>,2:17]
[@8,25:27='end',<37>,3:0]
[@9,28:28='\n',<51>,3:3]
[@10,29:28='<EOF>',<-1>,4:0]

error check

Java Virtual Machine

Translator architecture

java code

Wikify libraries

Page.java Table.java Image.java

apache.poi jexcel library jsoup library

“Hello,
World”

Runtime Environment

- cd WikiLang
- ./wikit file.wiki

========Translation Successful======
- ./wiki file
- Hello, World

Software development environment

SDE for translator:
ANTLR
(ANother Tool for Language Recognition)

Lexical analysis, automatic parse tree generation:
Grouping input characters int ID’s, nums, NL, WS, comments, strings,....
The tokens consists of two pieces of information, the token type(which identifies the lexical

structure), and the text matched by that token by the lexer
ANTLR V4 produces recursive descent parse trees:
This means that sometimes, the parser needs a lot of lookahead tokens to know which grammar

production to expand. ANTLR deals with that.

Resolving Ambiguities

Resolving Ambiguities:

The ANTLR parser chooses the first production
specified (when it sees an ambiguous phrase)
ANTLR also matches the input string to the
production specified first in the lexer to resolve
ambiguities

Parse Tree Listeners and visitors

Listeners and Visitors
ANTLR V4 automatically generates a tree listener to listen and react to
triggered events.

Each node in the generated parse tree has an enter() and exit method

On the enter and exit methods for each grammar production we output Java
code to a buffer which is then output to a file

Testing
Unit tests for each developing phase

→ Pass and Fail test cases
→ Using Wikipedia input for testing

Regression Testing
Testing of programs in the wiki library

→ HtmlParser
Problems detected

→ empty function did not translate properly
→ Function efficiency

Conclusion

“Never waste any time you
could spend sleeping”

...developing your next cool
programming language

