
StratMaster
A language for algorithmic trading.

The StratMaster Team

Project Manager: Jintack Lim

Language Guru: Vincent Mierlak

System Architect: Xingying Liu

System Integrator: Moning Zhang

Testing & Validation: Enrui Liao

The StratMaster Team

Project Manager: Jintack Lim

Language Guru: Vincent Mierlak

System Architect: Xingying Liu

System Integrator: Moning Zhang

Testing & Validation: Enrui Liao

Motivation:
● Computerized trading accounts for over half of all

trading volume

● Yet, no domain-specific language for algorithmic trading

● Proprietary software written mostly in C++ (and Java)

Introducing: StratMaster
● Concise and intuitive syntax

● Concurrent

● Modular blocks for algorithms and functions

● Designed for data

● Accounting interface for seamless integration into

trading platforms

StratMaster: The Brain Of A Trading
Platform

Computational Model

● Process-driven

● Data-driven

● Action-oriented

Demo 1: “Hello World”
/* Single Order in a STRATEGY */

USE ACCOUNT ac_master;

STRATEGY hello

{

 BUY { WHAT: SECURITY(EQTY(ZBRA)).AMOUNT(10000).PRICE(USD(85.17)); }

}

StratMaster Output: Orders
++++++++++++++++++STRATMASTER CONFIRMATION+++++++++++++++++

[2015-05-10 16:16:01] YOU BOUGHT: 10,000 SHARES OF ZBRA AT USD 85.17

 >>>>>> ORDER PLACED BY hello

++++++++++++++++++END CONFIRMATION+++++++++++++++++++++++++

ACCOUNT summary for ac_master:

[1] ZBRA: Total Shares: 10,000 Current Value: 907,200.00

 Total Value of Securities: 907,200.00

 Cash Balance Remaining: 99,148,300.00

 Total Account Value: 100,055,500.00

Demo 2: Buy Low, Sell High
● Start with $100 million

● BUY when price < $10

● SELL when price > $15

● Don’t let cash drop below $5 million

➢ 2 STRATEGYs, 2 ALGORITHMs in parallel

Building Blocks: Types & Objects
Process Blocks: Procedures:

● STRATEGY ● FUNCTION

● ALGORITHM Objects:

USE Elements: ● CURRENCY

● ACCOUNT ● SECURITY

● DATAFEED ● POSITION

● DATABASE ● INT, DOUBLE, PRICE

● EXCHANGE Orders: BUY / SELL

 Building Blocks: Types & Objects

STRATEGY

 Building Blocks: Types & Objects

STRATEGYALGORITHM

 Building Blocks: Types & Objects

STRATEGYALGORITHMDATA
FEED

 Building Blocks: Types & Objects

STRATEGYALGORITHMDATA
FEED

BUY / SELL
ORDERS

Demo 3: Moving Average
● Start with $100 million

● BUY when price > 50-day moving average

● SELL when price < 120-day moving average

➢ 1 STRATEGY with 2 concurrent processes

➢ 2 ALGORITHMs

➢ 1 FUNCTION

The StratMaster Team

Project Manager: Jintack Lim

Language Guru: Vincent Mierlak

System Architect: Xingying Liu

System Integrator: Moning Zhang

Testing & Validation: Enrui Liao

Translator architecture

Lexer

Symbol table
Creation

Semantic
Check

Interpreter

process handler

algorithm
handler

order
handler

create thread for
each strategy,
process, and
algorithm

Run time

manage
account

manage order
queue

Source file:
mystrat.sm

Parser
AST

Symbol table

Tokens

Syntactic
Check

Syntactic Structure

num_of_stratsnum_of_algos

num_of_
para

num_of_s
tatement

algo_list strategy_li
st

para_list statemen
t_list

num_of_pr
ocess

num_of_or
ders

order_li
st

proces
s_list

 program

The StratMaster Team

Project Manager: Jintack Lim

Language Guru: Vincent Mierlak

System Architect: Xingying Liu

System Integrator: Moning Zhang

Testing & Validation: Enrui Liao

Main
order queue

Strategy 1

Strategy 2

WHEN-UNTIL 1

WHEN-UNTIL 2

WHEN-UNTIL 3

Algorithm

Call

Signal

(emit order)

(emit order)

(emit order)

(put order) (order handler)
Run Time Environment

The StratMaster Team

Project Manager: Jintack Lim

Language Guru: Vincent Mierlak

System Architect: Xingying Liu

System Integrator: Moning Zhang

Testing & Validation: Enrui Liao

Semantic Checking
● What do we do?

○ ID conflict
○ Type error
○ id1 + num < id2

● How we do that?
○ Explicit Stack
○ Type synthesis
○ Postorder traversal id1

 int
num
 int

 +
 int

 <
bool

 id2
float

Test Plan:
● What do we check

header: account & datafeed case 1 - case 15

block: strategy & algorithm case 16 - case 33

set-if statement case 34 - case 45

when-until statement case 46 - case 80

 syntax error case 8-13, case 20, case 52 - case 55

semantic error case 55 - case 66

Test Plan:
● Interactive test model

○ Partial / Full
○ Log the fail case
○ Easy to debug
○ example

case 79 : /*<79>two WHEN statment in one strategy
-------> pass
case 80 : /*<80>two WHEN with until statment in one strategy
-------> pass
/*************summary**************/
pass: 70 / 80
fail case 3 : /*<3>Missing account
fail case 4 : /*<4>Account not found
fail case 9 : /*<9>Wrong Account

The StratMaster Team

Project Manager: Jintack Lim

Language Guru: Vincent Mierlak

System Architect: Xingying Liu

System Integrator: Moning Zhang

Testing & Validation: Enrui Liao

Project Management Strategy

● Team != sum of its parts

● Fast prototyping

● Micro Management

Conclusions

● what you learned
○ How to work as a team
○ Read and think before you do something

● what you would have done differently
○ To have the more detailed realistic the project plan

and keep it strictly

The StratMaster Team

Project Manager: Jintack Lim

Language Guru: Vincent Mierlak

System Architect: Xingying Liu

System Integrator: Moning Zhang

Testing & Validation: Enrui Liao

Thank You!

