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Motivation: 
● Computerized trading accounts for over half of all 

trading volume

● Yet, no domain-specific language for algorithmic trading

● Proprietary software written mostly in C++ (and Java)



Introducing: StratMaster
● Concise and intuitive syntax

● Concurrent

● Modular blocks for algorithms and functions

● Designed for data

● Accounting interface for seamless integration into 

trading platforms



StratMaster: The Brain Of A Trading 
Platform



Computational Model

● Process-driven

● Data-driven

● Action-oriented



Demo 1: “Hello World”
/* Single Order in a STRATEGY */

USE ACCOUNT ac_master;

STRATEGY hello

{

    BUY { WHAT: SECURITY(EQTY(ZBRA)).AMOUNT(10000).PRICE(USD(85.17)); }

}



StratMaster Output: Orders
++++++++++++++++++STRATMASTER CONFIRMATION+++++++++++++++++

[2015-05-10 16:16:01] YOU BOUGHT: 10,000 SHARES OF ZBRA AT USD 85.17

 >>>>>> ORDER PLACED BY hello

++++++++++++++++++END CONFIRMATION+++++++++++++++++++++++++

ACCOUNT summary for ac_master:

[  1] ZBRA: Total Shares: 10,000 Current Value: 907,200.00

             Total Value of Securities:        907,200.00

                Cash Balance Remaining:  99,148,300.00

                                       -------------------

                   Total Account Value: 100,055,500.00



Demo 2: Buy Low, Sell High
● Start with $100 million

● BUY when price < $10

● SELL when price > $15

● Don’t let cash drop below $5 million 

➢ 2 STRATEGYs, 2 ALGORITHMs in parallel



Building Blocks: Types & Objects  
Process Blocks: Procedures:

● STRATEGY ● FUNCTION

● ALGORITHM Objects:

USE Elements: ● CURRENCY

● ACCOUNT ● SECURITY

● DATAFEED ● POSITION

● DATABASE ● INT, DOUBLE, PRICE

● EXCHANGE Orders: BUY / SELL
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Demo 3: Moving Average  
● Start with $100 million

● BUY when price  > 50-day moving average

● SELL when price < 120-day moving average

➢ 1 STRATEGY with 2 concurrent processes 

➢ 2 ALGORITHMs

➢ 1 FUNCTION
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Translator architecture
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Syntactic Structure
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Main
order queue
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Semantic Checking
● What do we do?

○ ID conflict
○ Type error
○ id1 + num < id2

● How we do that?
○ Explicit Stack
○ Type synthesis
○ Postorder traversal  id1

 int
num
 int

   +
  int

  <
bool

 id2
float



Test Plan: 
● What do we check

 
header: account & datafeed case 1 - case 15

block: strategy & algorithm case 16 - case 33

set-if statement case 34 - case 45

when-until statement case 46 - case 80

 syntax error case 8-13, case 20, case 52 - case 55

semantic error case 55 - case 66



Test Plan: 
● Interactive test model

○ Partial / Full
○ Log the fail case
○ Easy to debug
○ example

case 79 : /*<79>two WHEN statment in one strategy 
-------> pass
case 80 : /*<80>two WHEN with until statment in one strategy 
-------> pass
/*************summary**************/
pass:  70 / 80
fail case 3 :  /*<3>Missing account
fail case 4 :  /*<4>Account not found
fail case 9 :  /*<9>Wrong Account
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Project Management Strategy

● Team != sum of its parts

● Fast prototyping

● Micro Management



Conclusions

● what you learned
○ How to work as a team 
○ Read and think before you do something

● what you would have done differently
○ To have the more detailed realistic the project plan 

and keep it strictly
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