

What’s ASCII-art ?

http://en.wikipedia.org/wiki/Graphic_design
http://en.wikipedia.org/wiki/Computer

Outline

● Hello, Adele
● The Adele Programming Language
● Adele Compiler: an Anatomy
● The Runtime Environment
● Quality Assurance
● Project & Process Management

● ASCII-art has been an interesting element in the online
community for a long time.
○ Simple facial expression (^__^)
○ Complex & interactive graphical representation

● Handmade ASCII-art is exhausting.
○ Hours of work to adjust the positions of the

components.
● Adele is simple and intuitive for creating ASCII artwork.

○ Easy to write, intuitive to use, portable outcome
○ web-ready target code
○ interactive functionalities

Hello, Adele

Quick Facts about Adele

● Adele is
○ a general purpose language focusing on ASCII-art

processing.
■ an imperative language, starting the program

from the main function.
■ an object-friendly language. User-defined types

are supported.
■ a Turing-complete language

○ portable and web-ready
■ generating web-ready executables
■ It’s also portable. The target code is JavaScript.

○ written in Java using ANTLR4 & StringTemplate4

Hello, World !

The Adele Programming Language I

● Program:
○ Function definition
○ group declaration
○ array/var declaration

● Function
○ return type
○ parameter list
○ body (statements)

int test(int a, int b)
return a + b;

end

The Adele Programming Language II

● “if” statement

● “while” statement

if (a > b)
a = b;

end

while (a > b)
a = a + b;

end

The Adele Programming Language III

● array

● group (structure)
○ declare
○ instantiate

int a[2][2];

group A
int a;

end
…
group A instance;

The Adele Programming Language IV

● @ operator

● // operator

graph a = str2graph(“hello adele”);
a @ (1, 1)

graph a = str2graph(“hello adele”);
graph b = str2graph(“!”);
b // a @ (0, 11); # -> “hello adele!”

More Than Fun!

Architecture of Adele Compiler

Lexer & Parser

● Grammars in ANTLR4
○ adelelex.g4
○ adele.g4

● Generated by ANTLR4 tool
○ adeleLexer
○ adeleParser

● Integrated flow to generate AST

Semantics Analysis &
Code Generation

● AST traversal is easy with ANTLR4
○ ParseTreeWalker

● Semantics analysis - 2 passes
○ ScanPhase
○ DefPhase
○ Self-defined extended symbol table

● Code generation - 1 pass
○ TransPhase

 Run-time Environment (1)

● Version 1
○ JavaScript can run on any modern browser
○ So browser act as our target program interpreter:

■ It renders the drawings of ASCII-art first
■ Then plays the art according to the timeline

(sleep function marks intervals between
drawing)

 Run-time Environment (2)

● Version 2：server-client structure
○ A Node.js server program is generated
○ The server communicates with the web browser

client via websocket
○ The server draws ASCII-art according to target

program, user input and file I/O in realtime.

Development Environment

● Adele is developed under a Unix-based environment,
specifically Ubuntu and Mac OS X

● We mainly wrote codes in Java with ANTLR and
StringTemplate as toolkits.
○ ANTLR 4
○ StringTemplate 4

● We use make (Makefile) and shell scripts to create
the pipeline for creating compiler, compiling source
code of Adele and testing.

Game Time!

Quality Assurance &
Automated Testing (1)

● Static Tests
○ Does the compiler give correct syntactic and

semantic error messages?

● Runtime Tests
○ Is the target program equivalent to the source

program?

Quality Assurance &
Automated Testing (2)

● Static Tests
1 void main()

2 int a = 1;

3 b = a; # err

4 a = “string”; # err

5 end

Quality Assurance &
Automated Testing (2)

● Static Tests
1 void main()

2 int a = 1;

3 b = a; # err

4 a = “string”; # err

5 end

pass static test

Quality Assurance &
Automated Testing (2)

● Static Tests
1 void main()

2 int a = 1; # err

3 b = a;

4 a = “string”; # err

5 end

Quality Assurance &
Automated Testing (2)

● Static Tests
1 void main()

2 int a = 1; # err

3 b = a;

4 a = “string”; # err

5 end

 error detected: 3 4, expected: 2 4

[ERROR] line 3: No such variable: b

[ERROR] line 4: Incompatible types: int:string

Quality Assurance &
Automated Testing (3)

● Runtime Tests
1 int add(int a, int b)

2 return a+b;

3 end

testIntMath … {

…

test.ok(target.add(1,2) == 3, "math: int add");

…

}

✔ testIntMath

Quality Assurance &
Automated Testing (4)

● Test Plan
○ Tutorial, LRM, grammar rules, features…
○ Aspects covered:

■ array
■ special constructs (e.g. overlay, attach)
■ declaration
■ expression (e.g. assign, function call)
■ group
■ syntax
■ function (e.g. scope, parameter)
■ arithmetic operation
■ flow control

Build Process &
Integrated Auto Testing &

Style Checking

Project Management (1)

● A hybrid process (waterfall X agile)
○ Predefined goals
○ Weekly short meeting/Quick response development
○ Prototype first. Running changes welcomed.

● Milestones
○ Phase Zero

■ Project definition
○ Hello world

■ Basic grammar ready/codegen
■ Simple runtime environment

○ Quicksort
■ Grammar refined/major codegen/basic testing
■ Simple UI

○ Pacman
■ Grammar/codegen/autotesting done
■ User interaction.

Project Management (2)

● Dynamic team organization
○ Task force-based

■ We constantly learn thing in different domain.
○ Separate testing members and developer members.

■ You don’t test the code you write after commit.
○ Quick response

■ Instant messages
■ Handler first

● { Single expert, all developers } model
○ Experts focusing on researches of the topic, and

teach the others.
○ Everyone is developer.

Process Management (1)

● Software version control
○ Hosted on Github
○ For major changes, a development branch will be

used, and merged back to master later.
● Software auto testing

○ Integrated in the build process
■ All commits have to be compilable and pass all

test cases
○ Developer has to write his own test cases

Process Management (2)

● Software coding style auto verification
○ Integrate “CheckStyle” tool to report style

inconsistency.
○ The style is derived from Google Java style except

■ Indent level changed to 4
■ Pass JavaDoc check

Questions ?

Runtime Error Handling (*)

● Collect the source code information and use
when runtime error happens.
○ Collect function definition and the source line

number in DefPhase
○ Embedded into the target code as an (partial)

symbol table.
■ hash table

● function name as key
● line number as value

● When runtime error happens,
○ Catch all exceptions in the main function.
○ Parse the exception stack using the information

collected in the earlier phase. (*)

