ASCII-Art Description Language

Jen-Chieh Huang, Yuan Lin, Jie-Gang Kuang,
Xiuhan Hu, Zixuan Gong
{ih3478, y12324, xh2234, jk3735, zg2203} @columbia.edu

What's ASGll-art ?

WiKki]

ASCII-art is a graphic design
technique that uses computers for
presentation and consists of
pictures pieced together from the
ASCII characters.

Tl
AN

/(MR
00NN RIIIIIEL

e
. nmumnm
sttt

i
sasssLesteN ML L AL mluumuu
s OO
ILCLLELLLLIRELLERLLAEERELRENVIN ({11 111111 §i

0

1

1///lm//w/(uunm\nu
i TRy
R Tt

i ummmmm Hs //mmmuuuwu e
e AR (O fccct s

CORIIIINORIPRIRIINRNIE -
P00PIRIIIINRIOCY

R
/muum\mmwwn/f /mumml/w////l
(((T

u
<<uuvmumum

utt

((
TGN LT

i Rrernt
lumnmmmmuum

(T

v R (e
T s Rt T
1 1 7 T wab i T
Hn. b u LTI
1
Hn, I T
1 (¢
1 i T
1
GO (i 6 (
1 ///lu////rumuu(mum it s
(I C {
1 i ST s 117 it
(1 / S
HG
(

G ////III(((|////-n///l//(unllll(n(/// /s

e AR

i
Qi

L T s T

OO LT
HHHHH

e
(ORI ()71
s

A
/A

ssd M

T e R
e frerrer T

sasiie, WA
T T R sasast A
R T e R T
T R e
Sl e uu/» ,
T T

u/um‘mt:ummu I i

um

nmuuumun/
TR

http://en.wikipedia.org/wiki/Graphic_design
http://en.wikipedia.org/wiki/Computer

Outline

Hello, Adele

The Adele Programming Language
Adele Compiler: an Anatomy

The Runtime Environment

Quality Assurance

Project & Process Management

Hello, Adele

e ASCIl-art has been an interesting element in the online
community for a long time.

o Simple facial expression (* _*)
o Complex & interactive graphical representation
e Handmade ASClII-art is exhausting.

o Hours of work to adjust the positions of the
components.
e Adele is simple and intuitive for creating ASCII artwork.
o Easy to write, intuitive to use, portable outcome
o web-ready target code
o interactive functionalities

Quick Facts about Adele

e Adeleis

o a general purpose language focusing on ASClI-art
processing.

m an imperative language, starting the program
from the main function.

m an object-friendly language. User-defined types
are supported.
m a Turing-complete language
o portable and web-ready
m generating web-ready executables
m It's also portable. The target code is JavaScript.
o written in Java using ANTLR4 & StringTemplate4

Hello, World !

The Adele Programming Language |

e Program:
o Function definition
o group declaration
o array/var declaration

e Function
o return type int test(int a, int b)
o parameter list return a + b;
o body (statements) end

The Adele Programming Language I

e “if” statement

if (a > b)
a = b;

(14

e ‘while” statement

while (a > b)
a = a + b;
end

The Adele Programming Language lli

® Jdlray

int a[2][2];

e group (structure)
o declare
o Instantiate

group A
int a;
end

group A instance;

The Adele Programming Language IV

e (@ operator

graph a = str2graph(“hello adele”);
a @ (1, 1)

e // operator

graph a str2graph(“hello adele”);
graph b = str2graph(“!”);
b // a@ (6, 11); # -> “hello adele!”

More Than Fun!

Architecture of Adele Compiler

—

Tokens Abstract
Syntax Tree
’
Y Y v Y Y
g Semantic Code
Source —»{ Lexer | Parser Scan > Anal G
Codes nalyzer enerator
: . f)]
Adele grammars Extended
(lexer and Symbol Table
arser rules
p) & J
~
Semantic

Analysis

JavaScript
Target
Codes

Lexer & Parser

‘—> Tokens <—‘
Adele

Source —»| Lexer » Parser AST

Codes
T org.antir.v4.Tool T

Adele grammars

e Grammars in ANTLR4

o adelelex.g4
o adele.g4

e Generated by ANTLR4 tool

o adelelLexer
o adeleParser

e |[ntegrated flow to generate AST

Semantics Analysis &
Code Generation

Extended
AST Symbol Table
ParseTreeWalker : :
¥) ¥

JavaScript
Scan > SA > CodeGen [Target
Codes

e AST traversal is easy with ANTLR4

o ParseTreeWalker

e Semantics analysis - 2 passes

o ScanPhase
o DefPhase
o Self-defined extended symbol table

e Code generation - 1 pass
o TransPhase

Run-time Environment (1)

e \ersion 1
o JavaScript can run on any modern browser
o So browser act as our target program interpreter:
m It renders the drawings of ASCII-art first

m [hen plays the art according to the timeline

(sleep function marks intervals between
drawing)

Web Browser
Javascript View Q

>
Target —» View
Codes —» Player

Render

User

Run-time Environment (2)

e \/ersion 2:server-client structure

o A Node. js server program is generated

o The server communicates with the web browser
client via websocket

o The server draws ASCII-art according to target
program, user input and file 1/O in realtime.

Javascript
Target
Codes

Server

R

Node.js

View

Client

View
Render

o

)

File 1O

B Keyboard Interaction

»| Web Browser |g

Player

Keyboard

O

Interaction

View

N

User

Development Environment

e Adele is developed under a Unix-based environment,
specifically Ubuntu and Mac OS X

e \We mainly wrote codes in Java with ANTLR and
StringTemplate as toolkits.
o ANTLR 4
o StringTemplate 4

e \We use make (Makefile) and shell scripts to create
the pipeline for creating compiler, compiling source
code of Adele and testing.

@ Game Time!

Quality Assurance &
Automated Testing (1)

e Static Tests

o Does the compiler give correct syntactic and
semantic error messages?

e Runtime Tests

o |s the target program equivalent to the source
program?

Quality Assurance &
Automated Testing (2)

e Static Tests

1 void main()

2 int a = 1;
3 b = a; # err
4 a = “string”; # err

Quality Assurance &
Automated Testing (2)

e Static Tests

1 void main()

2 int a = 1;

3 b = a; # err
4 a = “string”; # err
5 end

pass static test

Quality Assurance &
Automated Testing (2)

e Static Tests

1 void main()

2 int a = 1; # err
3 b = a;
4 a = “string”; # err

Quality Assurance &
Automated Testing (2)

e Static Tests

1 void main()

2 int a = 1; # err
3 b = a;

4 a = “string”; # err
5 end

[ERROR] line 3: No such variable: b
[ERROR] line 4: Incompatible types: int:string

Quality Assurance &
Automated Testing (3)

e Runtime Tests

1 int add(int a, int b)

2 return a+b;

v testIntMath

Quality Assurance &

Automated Testing (4)

e JestPlan

o Tutorial, LRM, grammar rules, features...
o Aspects covered:

array
special constructs (e.g. overlay, attach)
declaration

expression (e.g. assign, function call)
group

syntax

function (e.g. scope, parameter)
arithmetic operation

flow control

Build Process &
Integrated Auto Testing &
Style Checking

Project Management (1)

e A hybrid process (waterfall X agile)
o Predefined goals
o Weekly short meeting/Quick response development
o Prototype first. Running changes welcomed.

e Milestones

o Phase Zero
m Project definition

o Hello world
m Basic grammar ready/codegen
m Simple runtime environment

o Quicksort
m Grammar refined/major codegen/basic testing
m Simple Ul

o Pacman
m Grammar/codegen/autotesting done
m User interaction.

Project Management (2)

e Dynamic team organization
o Task force-based
m We constantly learn thing in different domain.
o Separate testing members and developer members.
m You don't test the code you write after commit.
o Quick response
m Instant messages
m Handler first

e { Single expert, all developers } model

o Experts focusing on researches of the topic, and

teach the others.
o Everyone is developer.

Process Management (1)

e Software version control
o Hosted on Github

o For major changes, a development branch will be
used, and merged back to master later.

e Software auto testing
o Integrated in the build process

m All commits have to be compilable and pass all

test cases
o Developer has to write his own test cases

Process Management (2)

e Software coding style auto verification

o Integrate “CheckStyle” tool to report style
Inconsistency.

o The style is derived from Google Java style except
m Indent level changed to 4
m Pass JavaDoc check

Questions ?

Runtime Error Handling (*)

e (Collect the source code information and use
when runtime error happens.

o Collect function definition and the source line
number in DefPhase

o Embedded into the target code as an (partial)

symbol table.

m hash table
e function name as key
e |ine number as value

e \When runtime error happens,
o Catch all exceptions in the main function.

o Parse the exception stack using the information
collected in the earlier phase. (¥)

