
1 Al Aho

Teaching Compilers

Al Aho
aho@cs.columbia.edu

SIGCSE
Milwaukee, WI
March 12, 2010

http://www.cs.columbia.edu/

2 Al Aho

Why Take Programming Languages and
 Compilers?

3 Al Aho

Why Take Programming Languages and Compilers?

To appreciate the marriage of theory and practice

“Theory and practice are not mutually exclusive;
they are intimately connected. They live together
and support each other.”

[D.E. Knuth, 1989]

4 Al Aho

Theory in Practice: Regular Expression Pattern
Matching in Perl, Python, Ruby vs. AWK

Time to check whether a?nan

matches an

regular expression and text size n

Russ Cox, Regular expression matching can be simple and fast (but is slow in Java,
Perl, PHP, Python, Ruby, ...)

[http://swtch.com/~rsc/regexp/regexp1.html, 2007]

5 Al Aho

Why Take Programming Languages and
Compilers?

To appreciate the marriage of theory and practice

To explore the dimensions of computational thinking

To exercise creativity

To learn robust software development practices

6 Al Aho

What is a Programming Language?

A programming language

is a notation for describing
computations to people and to machines.

7 Al Aho

Computational Thinking in Programming Language
Design

Underlying every programming language is a model of
computation:

Procedural: C, C++, C#, Java

Declarative: SQL

Logic: Prolog

Functional: Haskell

Scripting: AWK, Perl, Python, Ruby

8 Al Aho

Evolutionary Forces on Languages and Compilers

More and different kinds of languages

Increasing diversity of applications

Stress on increasing productivity

Need to improve software reliability

Target machines more diverse

Parallel machine architectures

Massive compiler collections

9 Al Aho

1970 2010
Fortran

Java

Lisp

C

Cobol

PHP

Algol

60

C++

APL

Visual Basic

Snobol

4

C#

Simula

67

Python

Basic

Perl

PL/1

Delphi

Pascal

JavaScript

Evolution of Programming Languages: 1970 to 2010

[http://www.tiobe.com]

10 Al Aho

Programming Languages

Today there are thousands of programming languages.

The website http://www.99-bottles-of-beer.net
has programs in 1,271 different programming

 languages to print the lyrics to the song
“99 Bottles of Beer.”

http://www.99-bottles-of-beer.net/

11 Al Aho

“99 Bottles of Beer”
99 bottles of beer on the wall, 99 bottles of beer.
Take one down and pass it around, 98 bottles of beer on the wall.

98 bottles of beer on the wall, 98 bottles of beer.
Take one down and pass it around, 97 bottles of beer on the wall.

.

.

.
2 bottles of beer on the wall, 2 bottles of beer.
Take one down and pass it around, 1 bottle of beer on the wall.

1 bottle of beer on the wall, 1 bottle of beer.
Take one down and pass it around, no more bottles of beer

on the wall.

No more bottles of beer on the wall, no more bottles of beer.
Go to the store and buy some more, 99 bottles of beer on the wall.

[Traditional]

12 Al Aho

“99 Bottles of Beer”

in AWK
BEGIN {
for(i = 99; i >= 0; i--) {
print ubottle(i), "on the wall,", lbottle(i) "."
print action(i), lbottle(inext(i)), "on the wall."
print

}
}
function ubottle(n) {
return sprintf("%s bottle%s of beer", n ? n : "No more", n - 1 ? "s" : "")

}
function lbottle(n) {
return sprintf("%s bottle%s of beer", n ? n : "no more", n - 1 ? "s" : "")

}
function action(n) {
return sprintf("%s", n ? "Take one down and pass it around," : \

"Go to the store and buy some more,")
}
function inext(n) {
return n ? n - 1 : 99

}
[Osamu Aoki, http://people.debian.org/~osamu]

13 Al Aho

“99 Bottles of Beer”

in Perl
''=~('(?{' .('`' |'%') .('[' ^'-')
.('`' |'!') .('`' |',') .'"'. '\\$'
.'==' .('[' ^'+') .('`' |'/') .('['
^'+') .'||' .(';' &'=') .(';' &'=')
.';-' .'-'. '\\$' .'=;' .('[' ^'(')
.('[' ^'.') .('`' |'"') .('!' ^'+')
.'_\\{' .'(\\$' .';=('. '\\$=|' ."\|".('`'^'.'
).(('`')| '/').').' .'\\"'.+('{'^'['). ('`'|'"') .('`'|'/'
).('['^'/') .('['^'/'). ('`'|',').('`'|('%')). '\\".\\"'.('['^('(')).
'\\"'.('['^ '#').'!!--' .'\\$=.\\"' .('{'^'['). ('`'|'/').('`'|"\&").(
'{'^"\[").('`'|"\"").('`'|"\%").('`'|"\%").('['^(')')). '\\").\\"'.
('{'^'[').('`'|"\/").('`'|"\.").('{'^"\[").('['^"\/").('`'|"\(").(
'`'|"\%").('{'^"\[").('['^"\,").('`'|"\!").('`'|"\,").('`'|(',')).
'\\"\\}'.+('['^"\+").('['^"\)").('`'|"\)").('`'|"\.").('['^('/')).
'+_,\\",'.('{'^('[')). ('\\$;!').('!'^"\+").('{'^"\/").('`'|"\!").(
'`'|"\+").('`'|"\%").('{'^"\[").('`'|"\/").('`'|"\.").('`'|"\%").(
'{'^"\[").('`'|"\$").('`'|"\/").('['^"\,").('`'|('.')). ','.(('{')^
'[').("\["^ '+').("\`"| '!').("\["^ '(').("\["^ '(').("\{"^ '[').("\`"|
')').("\["^ '/').("\{"^ '[').("\`"| '!').("\["^ ')').("\`"| '/').("\["^
'.').("\`"| '.').("\`"| '$')."\,".('!'^('+')). '\\",_,\\"' .'!'.("\!"^
'+').("\!"^ '+').'\\"'. ('['^',').('`'|"\(").('`'|"\)").('`'|"\,").(
'`'|('%')). '++\\$="})');$:=('.')^ '~';$~='@'| '(';$^=')'^ '[';$/='`';

[Andrew Savage, http://search.cpan.org/dist/Acme-EyeDrops/lib/Acme/EyeDrops.pm]

14 Al Aho

“99 Bottles of Beer”

in the Whitespace Language

[Edwin Brady and Chris Morris, U. Durham]

15 Al Aho

Conlangs: Made-Up Languages

Okrent

lists 500 invented languages

including:

• Lingua Ignota

[Hildegaard

of Bingen, c. 1150]

• Esperanto [L. Zamenhof, 1887]

• Klingon

[M. Okrand, 1984]
Huq

Us'pty

G'm

(I love you)

• Proto-Central Mountain [J. Burke, 2007]

• Dritok

[D. Boozer, 2007]
Language of the Drushek, long-tailed beings with
large ears and no vocal cords

[Arika

Okrent, In the Land of Invented Languages, 2009]
[http://www.inthelandofinventedlanguages.com]

16 Al Aho

What is a Compiler?

Compilersource
program

target
program

input

output

17 Al Aho

Target Languages

Another programming language

CISCs

RISCs

Vector machines

Multicores

GPUs

Quantum computers

18 Al Aho

An Interpreter Directly Executes a Source Program
on its Input

Interpreter

source
program

output

input

19 Al Aho

Java Compiler

Translator

source program

output
input

Java
Virtual

Machine

intermediate representation

20 Al Aho

Compilers Can Have Many Other Forms

• Cross compiler: a compiler on one machine that generates
target code for another machine

• Incremental compiler:

one that can compile a source
program in increments

• Just-in-time compiler:

one that is invoked at runtime to
compile each called method in the IR to the native code of
the target machine

• Ahead-of-time compiler:

one that translates IR to native
code prior to program execution

21 Al Aho

What Should We Teach?

• Unifying abstractions

• Fundamental models

• Basic algorithms

• Computational thinking

22 Al Aho

Specifying Syntax:
 Regular Expressions and Finite Automata

Regular expressions

generate the regular sets
a(a|b)* generates all strings of a’s

and b’s

beginning with an a

Finite automata

recognize the regular sets

This automaton recognizes the same set of strings.

0 1a

a,b

23 Al Aho

Specifying Syntax:
 Context-free Grammars

This grammar G generates

all strings of a’s

and b’s

with
the same number of a’s

as b’s:

S

→ aAbS

| bBaS

| ε
A

→ aAbA

| ε

B

→ bBaB

| ε

G is unambiguous and has
only one parse tree for
every sentence

in L(G).

S

SbAaε

a A b S

ε ε

24 Al Aho

There is an Art to Writing Good Grammars
The grammar S

→ aSbS

| bSaS

| ε

also generates all strings

of a’s

and b’s

with the same number of a’s

as b’s.

But this grammar is ambiguous: abab

has two parse trees

S

a

b S a S ε

S b S

ε ε

(ab)n

has parse trees⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ n

n
n

2
1

1

S

SbSaε

a S b S

ε ε

25 Al Aho

Natural Languages are Inherently Ambiguous

I made her duck.
[5 meanings: D. Jurafsky

and J. Martin, 2000]

One morning I shot an elephant in my pajamas. How he got
into my pajamas I don’t know.

[Groucho

Marx, Animal Crackers, 1930]

List the sales of the products produced in 1973 with the
products produced in 1972.

[455 parses: W. Martin, K. Church, R. Patil, 1987]

26 Al Aho

Methods for Specifying the Semantics of
 Programming Languages

Operational semantics
translation of program constructs to an understood language

Axiomatic semantics
assertions called preconditions and postconditions

specify the
properties of statements

Denotational

semantics
semantic functions map syntactic objects to semantic values

27 Al Aho

Principles of Compiler Design circa 1977

• Introduction to compilers
• Programming languages
• Finite automata and lexical analysis
• Syntactic specification of programming languages
• Basic parsing techniques
• Automatic construction of efficient parsers
• Syntax-directed translation
• Symbol tables
• Run-time storage
• Error detection and recovery
• Code optimization
• Data-flow analysis
• Code generation

28 Al Aho

Phases of a Compiler

Semantic
Analyzer

Interm.
Code
Gen.

Syntax
Analyzer

Lexical
Analyzer

Code
Optimizer

Code
Gen.

source
program

token
stream

syntax
tree

annotated
syntax

tree

interm.
rep.

interm.
rep.

target
program

Symbol Table

29 Al Aho

Compiler Component Generators

Syntax
Analyzer

Lexical
Analyzer

source
program

token
stream

syntax
tree

Lexical
Analyzer

Generator
(lex)

Syntax
Analyzer

Generator
(yacc)

lex
specification

yacc
specification

30 Al Aho

Lex

Specification for a Desk Calculator

number [0-9]+\.?|[0-9]*\.[0-9]+

%%

[] { /* skip blanks */ }

{number} { sscanf(yytext, "%lf", &yylval);

return NUMBER; }

\n|. { return yytext[0]; }

31 Al Aho

Yacc

Specification for a Desk Calculator

%token NUMBER

%left '+'

%left '*'

%%

lines : lines expr '\n' { printf("%g\n", $2); }

| /* empty */

;

expr : expr '+' expr { $$ = $1 + $3; }

| expr '*' expr { $$ = $1 * $3; }

| '(' expr ')' { $$ = $2; }

| NUMBER

;

%%

#include "lex.yy.c"

32 Al Aho

Creating the Desk Calculator

Invoke the commands
lex desk.l
yacc desk.y
cc y.tab.c –ly –ll

Result

Desk
Calculator1.2 * (3.4 + 5.6) 10.8

33 Al Aho

Added Topics circa 2010

• Garbage collection
• Data-flow analysis schemas
• Instruction-level parallelism
• Optimizing for parallelism and locality
• Interprocedural

analysis
• New intermediate representations

– Static single-assignment form
– MSIL

• New tools
– ANTLR
– Phoenix

• Compilers now come in collections
– GCC
– .NET

34 Al Aho

The Compilers Course at Columbia

• In PLT you will learn the syntactic and semantic elements of the

 most important modern programming languages as well as the
algorithms and techniques used by compilers to translate them
into machine and other target languages. The course will cover
imperative, object-oriented, functional, logic, and scripting
languages.

• A highlight of this course is a semester-long programming project
in which you will work in a small team to create and implement an
innovative little language of your own design. This project will

 teach you project management, teamwork, and communication
skills that you can apply in all aspects of your career.

35 Al Aho

The Compilers Course Project at Columbia

Week Task
2 Form a team of five

and design an innovative new language

4 Write a whitepaper

on your proposed language modeled after
the Java whitepaper

8 Write a tutorial

patterned after Chapter 1 and a language
reference manual

patterned after Appendix A of Kernighan
and Ritchie’s book, The C Programming Language

14 Give a ten-minute presentation

of the language to the class

15

Give a 30-minute working demo

of the compiler to the
teaching staff

15

Hand in the final project report

36 Al Aho

Team Roles

• Project manager
– sets the project schedule, holds weekly meetings with the entire team,

maintains the project log, and makes sure the project deliverables get done
on time.

• Language and tools guru
– defines the baseline process to track language changes and maintain the

intellectual integrity of the language.
– teaches the team how to use various tools used to build the compiler.

• System architect
– defines the compiler architecture, modules, and interfaces.

• System integrator
– defines the system platform and makes sure the compiler components work

together.
• Tester and validator

– defines the test suites and executes them to make sure the compiler meets
the language specification.

37 Al Aho

Some of the Languages Created in the Compilers
Course at Columbia in the Fall Semester 2009

BALL: simulating baseball games

Celluloid: interactive media sequencing

EZasPI: expressing zombies as programmable individuals

KAction: martial arts instruction

Pixel Power: image and graphics processing

Twinkle: creating interactive activities for toddlers

38 Al Aho

Pixel Power: a Stream Processing Language

Eliane

Kabkab
Nageswar

Keetha

Eric Liu
Kaushik

Viswanathan

Pixel Power is designed to make it
easier and more intuitive to write
software based on the stream
processing paradigm. It has built-in
data types that are conducive to
image and matrix operations. It uses
Microsoft’s DirectX High Level
Shader Language (HLSL) on
Windows.

39 Al Aho

Pixel Power: Language Brainstorming

Kaushik

Viswanathan

System architect of the

Pixel Power project

• Designed and implemented the
graphics libraries, and the links
between the translator modules
and the compiler environment

40 Al Aho

Pixel Power: Project Management

Eric Liu

Project manager of the

Pixel Power project

• Organized team meetings,
implemented compiler
preprocessing and
shared structures

41 Al Aho

Eric Liu: Project Management -

1

• A diverse team from different backgrounds

• Compromise: we don’t know each other, make
everyone happy vs. focus

• Expertise: focus our efforts behind one individual’s
extensive background

42 Al Aho

Eric Liu: Project Management -

2

• Communication: after every class, bulletin board
discussion, shared meeting notes & documents

• Loss of team member: redistribute jobs, pare down
grammar

• The best ways for getting along in a new team may not
get things done. Push ahead.

43 Al Aho

Pixel Power: Lessons Learned

Eliane

Kabkab

Systems integrator of the

Pixel Power project

• Defined the work
environment and tools

• Designed and
implemented syntax
translation into the
target code

--HSKHSK
A Quantum Programming A Quantum Programming

LanguageLanguage

Katherine Heller, Krysta Svore, Maryam Kamvar

Presented by Team HSK:

What is QWhat is Q--HSK?HSK?
QQ--HSK is a language which we designed HSK is a language which we designed
to facilitate the implementation and to facilitate the implementation and
simulation of quantum algorithms on a simulation of quantum algorithms on a
classical computerclassical computer

46 Al Aho

Computational Thinking for Designing
Quantum Computer Programming Languages

Physical
System

Mathematical
Formulation

Discretization

Model of
Computation

47 Al Aho

Quantum Computer Compiler

Front
End

Technology
Independent

CG+Optimizer

Technology
Dependent

CG+Optimizer

Technology
Simulator

quantum
source

program

QIR QASM QPOL

QIR: quantum intermediate representation
QASM: quantum assembly language
QPOL: quantum physical operations language

quantum
circuit

quantum
circuit

quantum
device

quantum
mechanics

K. Svore, A. Aho, A. Cross, I. Chuang, I. Markov
A Layered Software Architecture for Quantum Computing Design Tools

IEEE Computer, 2006, vol. 39, no. 1, pp.74-83

Computational abstractions

48 Al Aho

Mathematical Model:
Quantum mechanics,

unitary operators,
tensor products

Physical Device

Computational
Formulation:

Quantum bits,
gates, and circuits

Target
QPOL

Physical System:
Laser pulses

applied
to ions in traps

|x〉 H •
|y〉

Quantum Circuit ModelEPR Pair Creation QIR QPOLQASM

QIR to
QASM

Machine Instructions

A 21 3

A 21 3

B

B

QCC for Ion Trap Quantum Computing Device

49 Al Aho

Mathematical Model:
Quantum mechanics,

unitary operators,
tensor products

Computational
Formulation:

Quantum bits,
gates, and circuits

Software:
QPOL

Physical System:
Laser pulses

applied
to ions in traps

|x〉 H •
|y〉

Quantum Circuit ModelEPR Pair Creation QIR QPOLQASM

QCC:
QIR,

QASM

Machine Instructions Physical Device

A 21 3

A 21 3

B
B

Design Flow with Fault Tolerance and
 Error Correction

Fault Tolerance and Error Correction (QEC)

QEC

QEC
Moves Moves

|a〉 •
|b〉

|a1〉
|a2〉
|a3〉
|b1〉
|b2〉
|b3〉

K. Svore
PhD Thesis

Columbia, 2006

50 Al Aho

Why Take Programming Languages and
Compilers?

To appreciate the marriage of theory and practice

To explore the dimensions of computational thinking

To exercise creativity

To learn robust software development practices

51 Al Aho

Plus Three Skills for Life

Project management

Teamwork

Communication both oral and written

52 Al Aho

Telling Lessons Learned

• “Designing a language is hard and designing a simple
language is extremely hard!”

• “During this course we realized how naïve and
overambitious we were, and we all gained a newfound
respect for the work and good decisions that went into
languages like C and Java which we’ve taken for
granted for years.”

	Teaching Compilers
	Slide Number 2
	Why Take Programming Languages and Compilers?
	Theory in Practice: Regular Expression Pattern Matching in Perl, Python, Ruby vs. AWK
	Why Take Programming Languages and Compilers?
	What is a Programming Language?
	Computational Thinking in Programming Language Design
	Evolutionary Forces on Languages and Compilers
	Evolution of Programming Languages: 1970 to 2010
	Programming Languages
	“99 Bottles of Beer”
	“99 Bottles of Beer” in AWK
	“99 Bottles of Beer” in Perl
	“99 Bottles of Beer” in the Whitespace Language
	Conlangs: Made-Up Languages
	What is a Compiler?
	Target Languages
	An Interpreter Directly Executes a Source Program on its Input
	Java Compiler
	Compilers Can Have Many Other Forms
	What Should We Teach?
	Specifying Syntax:�Regular Expressions and Finite Automata
	Specifying Syntax:�Context-free Grammars
	There is an Art to Writing Good Grammars
	Natural Languages are Inherently Ambiguous
	Methods for Specifying the Semantics of�Programming Languages
	Principles of Compiler Design circa 1977
	Phases of a Compiler
	Compiler Component Generators
	Lex Specification for a Desk Calculator
	Yacc Specification for a Desk Calculator
	Creating the Desk Calculator
	Added Topics circa 2010
	The Compilers Course at Columbia
	The Compilers Course Project at Columbia
	Team Roles
	Some of the Languages Created in the Compilers Course at Columbia in the Fall Semester 2009
	Pixel Power: a Stream Processing Language
	Pixel Power: Language Brainstorming
	Pixel Power: Project Management
	Eric Liu: Project Management - 1
	Eric Liu: Project Management - 2
	Pixel Power: Lessons Learned
	 -HSK
	What is Q-HSK?
	Slide Number 46
	Quantum Computer Compiler
	QCC for Ion Trap Quantum Computing Device
	Design Flow with Fault Tolerance and�Error Correction
	Why Take Programming Languages and Compilers?
	Plus Three Skills for Life
	Telling Lessons Learned

