
Al Aho
aho@cs.columbia.edu

Unnatural Language Processing

Keynote Presentation SSST-3
NAACL HLT 2009 - Boulder, CO

June 5, 2009
1 Al Aho

http://www.cs.columbia.edu/

2 Al Aho

The Concern-Location Problem in Software

What program elements are relevant to a requirement?

NLP + PLP can help!

More than 50% of the cost of
developing a program is spent
in maintenance.

More than 50% of the
maintenance time is spent
understanding the program.

Natural Languages

A natural language is a form of communication peculiar
to humankind. [Wikipedia]

Popular spoken natural languages:

Chinese 1,205m Portuguese 178m
Spanish 322m Bengali 171m
English 309m Russian 145m
Arabic 206m Japanese 122m
Hindi 108m German 95m

[Wikipedia]

Ethnologue catalogs 6,912 known living languages.

3 Al Aho

Conlangs: Made-Up Languages

Okrent lists 500 invented languages including:

• Lingua Ignota [Hildegaard of Bingen, c. 1150]

• Esperanto [L. Zamenhof, 1887]

• Klingon [M. Okrand, 1984]
Huq Us'pty G'm (I love you)

• Proto-Central Mountain [J. Burke, 2007]

• Dritok [D. Boozer, 2007]
Language of the Drushek, long-tailed beings with
large ears and no vocal cords

[Arika Okrent, In the Land of Invented Languages, 2009]
[http://www.inthelandofinventedlanguages.com]

4 Al Aho

Programming Languages

Programming languages are notations for describing
computations to people and to machines.

Underlying every programming language is a model of
computation:

Procedural: C, C++, C#, Java

Declarative: SQL

Logic: Prolog

Functional: Haskell

Scripting: AWK, Perl, Python, Ruby

5 Al Aho

Programming Languages
There are many thousands of programming languages.

Tiobe’s ten most popular languages for May 2009:
1. Java 6. Python

2. C 7. C#

3. C++ 8. JavaScript

4. PHP 9. Perl

5. Visual Basic 10. Ruby
[http://www.tiobe.com]

http://www.99-bottles-of-beer.net has programs in 1,271 different
programming languages to print out the lyrics to “99 Bottles of Beer.”

6 Al Aho

“99 Bottles of Beer”
99 bottles of beer on the wall, 99 bottles of beer.
Take one down and pass it around, 98 bottles of beer on the wall.

98 bottles of beer on the wall, 98 bottles of beer.
Take one down and pass it around, 97 bottles of beer on the wall.

.

.

.
2 bottles of beer on the wall, 2 bottles of beer.
Take one down and pass it around, 1 bottle of beer on the wall.

1 bottle of beer on the wall, 1 bottle of beer.
Take one down and pass it around, no more bottles of beer on the wall.

No more bottles of beer on the wall, no more bottles of beer.
Go to the store and buy some more, 99 bottles of beer on the wall.

[Traditional]
7 Al Aho

“99 Bottles of Beer” in AWK
BEGIN {
for(i = 99; i >= 0; i--) {
print ubottle(i), "on the wall,", lbottle(i) "."
print action(i), lbottle(inext(i)), "on the wall."
print

}
}
function ubottle(n) {
return sprintf("%s bottle%s of beer", n ? n : "No more", n - 1 ? "s" : "")

}
function lbottle(n) {
return sprintf("%s bottle%s of beer", n ? n : "no more", n - 1 ? "s" : "")

}
function action(n) {
return sprintf("%s", n ? "Take one down and pass it around," : \

"Go to the store and buy some more,")
}
function inext(n) {
return n ? n - 1 : 99

}
[Osamu Aoki, http://people.debian.org/~osamu]

8 Al Aho

“99 Bottles of Beer” in Perl
''=~('(?{' .('`' |'%') .('[' ^'-')
.('`' |'!') .('`' |',') .'"'. '\\$'
.'==' .('[' ^'+') .('`' |'/') .('['
^'+') .'||' .(';' &'=') .(';' &'=')
.';-' .'-'. '\\$' .'=;' .('[' ^'(')
.('[' ^'.') .('`' |'"') .('!' ^'+')
.'_\\{' .'(\\$' .';=('. '\\$=|' ."\|".('`'^'.'

).(('`')| '/').').' .'\\"'.+('{'^'['). ('`'|'"') .('`'|'/'
).('['^'/') .('['^'/'). ('`'|',').('`'|('%')). '\\".\\"'.('['^('(')).
'\\"'.('['^ '#').'!!--' .'\\$=.\\"' .('{'^'['). ('`'|'/').('`'|"\&").(
'{'^"\[").('`'|"\"").('`'|"\%").('`'|"\%").('['^(')')). '\\").\\"'.
('{'^'[').('`'|"\/").('`'|"\.").('{'^"\[").('['^"\/").('`'|"\(").(
'`'|"\%").('{'^"\[").('['^"\,").('`'|"\!").('`'|"\,").('`'|(',')).
'\\"\\}'.+('['^"\+").('['^"\)").('`'|"\)").('`'|"\.").('['^('/')).
'+_,\\",'.('{'^('[')). ('\\$;!').('!'^"\+").('{'^"\/").('`'|"\!").(
'`'|"\+").('`'|"\%").('{'^"\[").('`'|"\/").('`'|"\.").('`'|"\%").(
'{'^"\[").('`'|"\$").('`'|"\/").('['^"\,").('`'|('.')). ','.(('{')^
'[').("\["^ '+').("\`"| '!').("\["^ '(').("\["^ '(').("\{"^ '[').("\`"|
')').("\["^ '/').("\{"^ '[').("\`"| '!').("\["^ ')').("\`"| '/').("\["^
'.').("\`"| '.').("\`"| '$')."\,".('!'^('+')). '\\",_,\\"' .'!'.("\!"^
'+').("\!"^ '+').'\\"'. ('['^',').('`'|"\(").('`'|"\)").('`'|"\,").(
'`'|('%')). '++\\$="})');$:=('.')^ '~';$~='@'| '(';$^=')'^ '[';$/='`';

[Andrew Savage, http://search.cpan.org/dist/Acme-EyeDrops/lib/Acme/EyeDrops.pm]
9 Al Aho

“99 Bottles of Beer” in the Whitespace Language

[Edwin Brady and Chris Morris, U. Durham]

10 Al Aho

A Little Bit of Formal Language Theory

An alphabet is a finite set of symbols.
{0, 1}, ASCII, UNICODE

A string is a finite sequence of symbols.
ε (the empty string), 0101, dog, cat

A language is a countably infinite set of strings called
sentences.

{ anbn | n ≥ 0 }, { s | s is a Java program }, { s | s is an English sentence }

A language has properties such as a syntax and semantics.

11 Al Aho

Language Translation

Given a source language S, a target language T,
and a sentence ss in in SS, , map map s intos into a sentence a sentence t in T
that has the same meaning as s.

12 Al Aho

Specifying Syntax: Regular Sets

Regular expressions generate the regular sets
a(a|b)* generates all strings of a’s and b’s beginning with an a

Finite automata recognize the regular sets

a,b

13 Al Aho

0 1a

Some Regular Sets

All words with the vowels in order
facetiously

All words with the letters in increasing lexicographic order
aegilops

All words with no letter occurring more than once
dermatoglyphics

Comments in the programming language C
/* any string without a star followed by a slash */

14 Al Aho

Some Regular Expression Pattern-Matching Tools

egrep

egrep ′a.*e.*i.*o.*u.*y′ /usr/dict/words
AWK

C

Java

JavaScript

Lex

Perl

Python

Ruby

15 Al Aho

Context-Free Languages

Context-free grammars generate the CFLs
Let G be the grammar with productions S → aSbS | bSaS | ε.

The language denoted by G is all strings of a’s and b’s with the same
number of a’s as b’s.

Parsing algorithms for recognizing the CFLs
Earley’s algorithm

Cocke-Younger-Kasami algorithm

Top-down LL(k) parsers

Bottom-up LR(k) parsers

16 Al Aho

Ambiguity in Grammars
Grammar S → aSbS | bSaS | ε generates all strings of a’s

and b’s with the same number of a’s as b’s.

This grammar is ambiguous: abab has two parse trees.

S

a

b S a S ε

S b S

ε ε

S

SbSaε

a S b S

ε ε

(ab)n has parse trees⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ n

n
n

2
1

1

17 Al Aho

Programming Languages are not
Inherently Ambiguous

The grammar G generates the same language

S → aAbS | bBaS | ε
A → aAbA | ε
B → bBaB | ε

G is unambiguous and has
only one parse tree for
every sentence in L(G).

S

SbAaε

a A b S

ε ε

18 Al Aho

Natural Languages are Inherently Ambiguous

I made her duck.
[5 meanings: D. Jurafsky and J. Martin, 2000]

One morning I shot an elephant in my pajamas. How he got
into my pajamas I don’t know.

[Groucho Marx, Animal Crackers, 1930]

List the sales of the products produced in 1973 with the
products produced in 1972.

[455 parses: W. Martin, K. Church, R. Patil, 1987]

19 Al Aho

Methods for Specifying the Semantics of
Programming Languages

Operational semantics
translation of program constructs to an understood language

Axiomatic semantics
assertions called preconditions and postconditions specify the properties of

statements

Denotational semantics
semantic functions map syntactic objects to semantic values

20 Al Aho

Translation of Programming Languages

Compilersource
program

target
program

input

output

21 Al Aho

Target Languages

Another programming language

CISCs

RISCs

Vector machines

Multicores

GPUs

Quantum computers

22 Al Aho

An Interpreter Directly Executes a Source Program
on its Input

Interpreter

source
program

output

input

23 Al Aho

Java Compiler

Translator

source program

output
input

Java
Virtual

Machine

intermediate representation

24 Al Aho

Phases of a Classical Compiler

Semantic
Analyzer

Interm.
Code
Gen.

Syntax
Analyzer

Lexical
Analyzer

Code
Optimizer

Code
Gen.

source
program

target
program

annotated interm.
rep.

interm.
rep.

token
stream

syntax
tree syntax

tree

Symbol Table

25 Al Aho

Compiler Component Generators

Syntax
Analyzer

Lexical
Analyzer

token
stream

syntax
tree

Lexical
Analyzer

Generator
(lex)

Syntax
Analyzer

Generator
(yacc)

lex
specification

yacc
specification

source
program

26 Al Aho

Lex Specification for a Desk Calculator

number [0-9]+\.?|[0-9]*\.[0-9]+

%%

[] { /* skip blanks */ }

{number} { sscanf(yytext, "%lf", &yylval);

return NUMBER; }

\n|. { return yytext[0]; }

27 Al Aho

Yacc Specification for a Desk Calculator

%token NUMBER

%left '+'

%left '*'

%%

lines : lines expr '\n' { printf("%g\n", $2); }

| /* empty */

;

expr : expr '+' expr { $$ = $1 + $3; }

| expr '*' expr { $$ = $1 * $3; }

| '(' expr ')' { $$ = $2; }

| NUMBER

;

%%

#include "lex.yy.c"

28 Al Aho

Creating the Desk Calculator

Invoke the commands
lex desk.l
yacc desk.y
cc y.tab.c –ly –ll

Result

Desk
Calculator1.2 * (3.4 + 5.6) 10.8

29 Al Aho

The Compilers Course at Columbia University

Week Task
2 Form a team of five and think of an innovative new language

4 Write a whitepaper on your proposed language modeled after
the Java whitepaper

8 Write a tutorial patterned after Chapter 1 and a language
reference manual patterned after Appendix A of Kernighan
and Ritchie’s book, The C Programming Language

14 Give a ten-minute presentation of the language to the class

15 Give a 30-minute working demo of the compiler to the
teaching staff

15 Hand in the final project report

30 Al Aho

Some of the Languages Created in the Compilers
Course in the Spring Semester 2009

AMFM: a fractal music composition language

GWAPL: a language for designing games with a purpose

PIGASUS: a language for distributed computing

ROBOT: a language for learning programming

sn*w: a language for specifying genetic algorithms

viski: a language for 2d animations

31 Al Aho

viski simulation of the inner planets

[V. Narla, I. Deliz, S. Dey, K. Ramasamy, I. Greenbaum: http://www.viski2d.com/]

32 Al Aho

33 Al Aho

The Concern-Location Problem in Software

A concern is any consideration that can impact the
implementation of a program.

What program elements are relevant to a concern?

Natural language information retrieval and compiler
program analysis techniques can help!

More than 50% of the cost of
developing a program is spent
in maintenance.

More than 50% of the
maintenance time is spent
understanding the program.

34 Al Aho

Concern-Location Problem

Concerns
Program
Elements

What program elements are relevant to a concern?

Concern location is vital for debugging, software
evolution and systems maintenance.

Concern–code relationships are often undocumented.
How can we construct these relationships reliably?

Marc Eaddy’s Prune Dependency Rule

A program element is relevant to a concern if the
program element should be removed or otherwise
altered when the concern is pruned.

Code dependent on removed code may need be altered
to prevent compile errors.

Easy (but time consuming) for humans to apply.

[M. Eaddy, A. Aho, G. Murphy,
Identifying, Assigning, and Quantifying Crosscutting Concerns,
ICSE ACOM, 2007]

35 Al Aho

Concern-Location Problem Case Study

ECMAScript Language
Specification ECMA-262 v3

International standard for JavaScript
172-page document written in English
360 concerns (“leaf” paragraphs)

RHINO JavaScript
Interpreter Version 1.5R6

32,134 source lines of Java code
1,870 methods
1,339 fields

36 Al Aho

Manual Concern Location

Concern–code relationship determined by a human

Existing tools were impractical for analyzing all
concerns of a real system
–Many concerns (>100)
–Many concern–code links (>10K)
–Hierarchical concerns

Eaddy’s ConcernTagger System used to assign
elements to concerns and determine coverage
statistics.

[Eaddy, Zimmerman, Sherwood, Garg, Murphy, Nagappan, Aho
Do Crosscutting Concerns Cause Defects?

IEEE Trans. Software Engineering, 2008]

37 Al Aho

38 Al Aho

Manual Concern Location

Using ConcernMapper, for a prior study Marc Eaddy had
manually determined 10,613 concern-code links
between the 360 concerns in the ECMAScript
Specification and the 32,134 lines of code in RHINO.

It took him 102 hours!

This extensive effort strongly motivated this work. ☺

39 Al Aho

Cerberus: Automated Concern Location

Concern–code relationship predicted by “experts”

Experts look for clues in documentation and code
Existing techniques only consult 1 or 2 experts
Cerberus is a system for automated concern location

that combines
1. Information retrieval
2. Execution tracing
3. Prune dependency analysis

[Eaddy, Aho, Antoniol, Gueheneuc - Cerberus: Tracing Requirements to Source Code Using
Static, Dynamic, and Semantic Analysis, IEEE ICPC 2008]

40 Al Aho

IR-based Concern Location

Goal: find locations of program entities relevant to a
given requirement (concern)

Program entities are documents

Requirements are queries

join Id_join
js_join(

)

Requirement
“Array.join”

Source
Code

41 Al Aho

Vector Space Model

Parsed code and requirements to extract term vectors
NativeArray.js_join() method “native,” “array,” “join”
“Array.join” requirement “array,” “join”

Extensions
Expanded abbreviations

numconns number, connections, numberconnections
Indexed field accesses

Term weights computed using standard tf × idf formula
Term frequency (tf)
Inverse document frequency (idf)

Calculated cosine distance to get similarity score
Cosine distance between document and query vectors

42 Al Aho

43 Al Aho

Execution-tracing-based Concern Location

Observed elements activated when concerns executed
–Analyzed run-time behavior of unit tests when each

concern is exercised
–Found elements uniquely activated by a concern

Call
Graph

js_join

var a = new Array(1, 2);
if (a.join(',') == "1,2")
{

print "Test passed";
}
else {

print "Test failed";
}

js_construct

Unit Test
for “Array.join”

Execution-tracing-based Concern Location

Compared traces for a set of concerns to distinguish
elements specific to a particular concern

Output is a list of methods ranked by their
Element Frequency–Inverse Concern Frequency score:

44 Al Aho

Prune Dependency Analysis

Infer code elements related to concerns based on
structural relationships to relevant seed elements
–Need to identify initial relevant seed elements

Prune dependency analysis
–Automates prune dependency rule
–Finds references to a given seed
–Finds superclasses and subclasses of that seed

using the program dependency graph

45 Al Aho

PDA Example

C AB

foofoomain bar
calls

contains

refs
containscontains contains

Program Dependency Graph

interface A {
public void foo();

}
public class B implements A {
public void foo() { ... }
public void bar() { ... }

}
public class C {
public static void main() {
B b = new B();
b.bar();

}

Source Code

inherits

46 Al Aho

C AB

foofoomain bar
callscalls

contains

refs
containscontains contains

Program Dependency Graph

interface A {
public void foo();

}
public class B implements A {
public void foo() { ... }
public void bar() { ... }

}
public class C {
public static void main() {
B b = new B();
b.bar();

}

Source Code

inherits

PDA Example

47 Al Aho

PDA Example

C AB

foofoomain bar

containscontains

refs
containscontainscontains contains

Program Dependency Graph

interface A {
public void foo();

}
public class B implements A {
public void foo() { ... }
public void bar() { ... }

}
public class C {
public static void main() {
B b = new B();
b.bar();

}

Source Code

calls

inherits

48 Al Aho

49 Al Aho

PDA Example

Program Dependency Graph

interface A {
public void foo();

}
public class B implements A {
public void foo() { ... }
public void bar() { ... }

}
public class C {
public static void main() {
B b = new B();
b.bar();

}

Source Code

inheritsinherits
C AB

foofoomain bar

refs
contains contains

calls

contains
contains

PDA Example

Program Dependency Graph

interface A {
public void foo();

}
public class B implements A {
public void foo() { ... }
public void bar() { ... }

}
public class C {
public static void main() {
B b = new B();
b.bar();

}

Source Code

C AB

foofoomain bar

refs
contains containscontains

calls

contains
contains

inherits

50 Al Aho

Cerberus System for Concern Location

[M. Eaddy, A. Aho,G. Antoniol, Y-G. Gueheneuc
Cerberus: Tracing Requirements to Source Code Using Static, Dynamic, and Semantic Analysis

IEEE ICPC 2008]
51 Al Aho

Effectiveness Measures

Precision

P = # relevant elements retrieved / total # retrieved

Recall

R = # relevant elements retrieved / total # relevant

F-Measure = 2PR / (P + R)

52 Al Aho

Applying Cerberus to ECMAScript and RHINO

ECMAScript Specification
360 ECMAScript requirements (“concerns”)
939 tests in the ECMAScript test suite cover 67% of the concerns

RHINO Interpreter
4,530 unique RHINO source code terms
3,345 RHINO documents (one for every type, method, and field)
1,870 methods

Threshold t
Concern location technique produces a list of retrieved elements
for each concern ranked by a relevance score. Elements whose
relevance is below t are discarded.

53 Al Aho

Comparison of Technique Effectiveness

Cerberus

t = .01%

t = 1%

54 Al Aho

Summary

The combination of the three techniques is the most
effective at locating concerns.
–combining expert judgments reduces the impact of “unqualified

experts”

Each technique and technique combination is effective
at locating concerns.

Prune dependency analysis is effective at boosting the
performance of the other techniques.

55 Al Aho

Open Problems

How well do these techniques work in other software
domains?

Are there better combinations of techniques?

Is there an effective software engineering process for
keeping track of concern-location relationships in
requirements and code?

Can we use NLP + PLP techniques to produce better
documentation for software?

56 Al Aho

Ultimate Open Problem: Is there a good
computational model for the human brain?

57 Al Aho

58 Al Aho

Unnatural Language
Processing

Al Aho
aho@cs.columbia.edu

SSST
Boulder, CO
June 5, 2009

http://www.cs.columbia.edu/

	Unnatural Language Processing
	The Concern-Location Problem in Software
	Natural Languages
	Conlangs: Made-Up Languages
	Programming Languages
	Programming Languages
	“99 Bottles of Beer”
	“99 Bottles of Beer” in AWK
	“99 Bottles of Beer” in Perl
	“99 Bottles of Beer” in the Whitespace Language
	A Little Bit of Formal Language Theory
	Language Translation
	Specifying Syntax: Regular Sets
	Some Regular Sets
	Some Regular Expression Pattern-Matching Tools
	Context-Free Languages
	Ambiguity in Grammars
	Programming Languages are notInherently Ambiguous
	Natural Languages are Inherently Ambiguous
	Methods for Specifying the Semantics ofProgramming Languages
	Translation of Programming Languages
	Target Languages
	An Interpreter Directly Executes a Source Program on its Input
	Java Compiler
	Phases of a Classical Compiler
	Compiler Component Generators
	Lex Specification for a Desk Calculator
	Yacc Specification for a Desk Calculator
	Creating the Desk Calculator
	The Compilers Course at Columbia University
	Some of the Languages Created in the Compilers Course in the Spring Semester 2009
	viski simulation of the inner planets
	The Concern-Location Problem in Software
	Concern-Location Problem
	Marc Eaddy’s Prune Dependency Rule
	Concern-Location Problem Case Study
	Manual Concern Location
	Manual Concern Location
	Cerberus: Automated Concern Location
	IR-based Concern Location
	Vector Space Model
	Execution-tracing-based Concern Location
	Execution-tracing-based Concern Location
	Prune Dependency Analysis
	PDA Example
	PDA Example
	PDA Example
	PDA Example
	PDA Example
	Cerberus System for Concern Location
	Effectiveness Measures
	Applying Cerberus to ECMAScript and RHINO
	Comparison of Technique Effectiveness
	Summary
	Open Problems
	Ultimate Open Problem: Is there a good computational model for the human brain?
	Unnatural Language Processing

