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Abstract

We study multivariate approximation for complex-valued functions defined over the d-dimensional torus, these func-
tions belonging to weighted standard Sobolev spaces of smoothness r. Algorithms are allowed to use finitely many
arbitrary continuous linear functionals, which may be chosen adaptively. The error of an algorithm is measured by the
L2 norm, in the the worst case setting. No matter how we choose positive weights, we prove that multivariate approx-
imation cannot be quasi-polynomially tractable, meaning that the minimal number of continuous linear functionals
needed to find an ε-approximation in the d-variate case grows faster than any polynomial in ε− ln d. We also study
(s, t)-weak tractability for positive s and t, meaning that the minimal number of continuous linear functionals is not
exponential in ε−t and d s. We restrict our attention to product weights, defined as products of powers of weightlets γ j.
We obtain conditions on the weightlets that are necessary and sufficient for our problem to be (s, t)-weakly tractable.
In particular, if rs < 2 and t ≤ 1, then our problem is (s, t)-weakly tractable iff γ j = o( j−(2−rs)/(rs)) as j→ ∞.
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1. Introduction

Over the last quarter-century, research in information-based complexity theory has focused on tractability studies.
The level of tractability of a specific problem defined over high-dimensional domains reflects the extent to which that
problem can be solved with reasonable cost. Rather than studying problems defined for classical (isotropic) Sobolev
spaces, tractability research has mainly dealt with function spaces having a (non-isotropic) tensor product structure.
Most typically, this has meant looking at functions over the unit d-cube Id (where d is large), constructed as a d-fold
tensor product of functions defined over the unit interval I = [0, 1]. Many results for such problems are found in the
monograph series [1, 2, 3].

In 2014, Kühn, Sickel and Ullrich [4] took a new tack, studying the tractability of multivariate approximation
over standard isotropic Sobolev spaces Hr(Td) for complex valued-functions defined over the d-dimensional torus
Td. The problem elements were chosen to be the unit ball of Hr(Td), but under three different norms; these norms
were equivalent for any given d, with equivalence constants depending on d. They consider algorithms that adaptively
use finitely many linear functionals from the class Λall of information, consisting of all continuous linear functionals.
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Measuring the error of an algorithm in the L2(Td)-norm and in the worst case setting, they studied the information
complexity n(ε, d), defined as the minimal number of continuous linear functionals needed to find an approximation
whose error is at most ε in the d-variate case, where ε ∈ (0, 1).

The reason for choosing Td instead of Id is one of practicality. It is well-known that n(ε, d) is the smallest integer n
such that the (n + 1)st eigenvalue of a particular operator is at most ε2. For the (non-isotropic) tensor product cases
that had been extensively studied in the past, we can explicitly determine these eigenvalues when the functions are
defined over Id. But when we turn to classical isotropic Sobolev spaces, we simply don’t know these eigenvalues for
the d-cube, but we do know them for the d-torus. So we now use tori rather than cubes when studying tractability for
classical Sobolev spaces. We hope that the eigenvalues for the d-cube will be found in the future, which would allow
us to study tractability also over the d-cube.

Another obstacle in studying the isotropic case even for the d-dimensional torus is that its eigenvalues have a
different form than those for the multivariate tensor product problems that had been previously studied. Whereas the
eigenvalues for multivariate tensor product problems are given by products of the eigenvalues for univariate problems,
the eigenvalues for multivariate approximation over standard Sobolev spaces are given by sums. Hence determining
tractability of multivariate approximation over standard Sobolev spaces requires different proof techniques than those
used for the tensor product case.

For each of the three norms mentioned above in [4], Kühn et al. found a condition that was necessary for weak
tractability, as well as one that was sufficient. However, there was a gap between these two conditions. Several papers
were able to fill this gap, albeit via taking different directions:

• Siedlecki and Weimar [5] introduced the concept of (s, t)-weak tractability, which generalizes weak tractability,
since weak tractability is (1, 1)-weak tractability. They were able to determine the values of s and t for which
the L2(Td)-approximation of Hr(Td) is (s, t) weakly tractable, and in so doing, were the first to fill the gap
mentioned above.

• Kühn, Mayer, and Ullrich [6] used entropy numbers, and characterized weak tractability for a family of norms
on Hr(Td) that includes the norms of [4] as special cases.

• Chen and Wang [7] studied anisotropic spaces, including isotropic spaces as a special case.

• The current authors [8] gave a new general characterization of (s, t)-weak tractability that did not require reorder-
ing the eigenvalues mentioned above. They used this new technique to successfully determine the (s, t)-weak
tractability of the L2(Td)-approximation problem for Hr(Td).

The paper of Kühn, Sickel and Ullrich was for unweighted isotropic Sobolev spaces. One of the norms studied was
the standard Sobolev norm, whose square is the sum of all derivatives ‖Dm f ‖2L2

of order |m| := m1 + m2 + · · ·+ md ≤ r.
In the present paper we consider weighted Sobolev spaces, where the square of the norm is the sum of all weighted
derivatives γ−1

d,m‖D
m f ‖2L2

of order |m| ≤ r, where γd,m ∈ (0, 1]. Hence, the unit ball can shrink a great amount when
going from the unweighted case to the weighted case. This might lead us to guess that some of the negative tractability
results for the unweighted case might become positive when we go to the weighted case. As we shall see, this is only
partially true.

By analogy with the tensor product case, one may hope that if the weights γd,m decay quickly enough, our problem
might be one of the following:

• Strongly polynomially tractable (SPT), meaning that the information complexity can be bounded by a polyno-
mial in ε−1 independently of d.

• Polynomially tractable (PT), meaning that the information complexity can be bounded by a polynomial in ε−1

and d.

• Quasi-polynomially tractable (QPT), meaning that the information complexity is bounded by a power of ε− ln d

for large d.

Obviously SPT =⇒ PT =⇒ QPT.
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Our first result is quite negative, perhaps even disheartening: no matter how we choose the positive weights γd,m,
the multivariate approximation problem over weighted standard Sobolev spaces is not QPT. That is, the information
complexity tends to infinity faster than any power of ε− ln d independently of the weights.

So the only way we can get a positive tractability result is if we are willing to settle for a level of tractability that is
even weaker than QPT. One such notion was given in [5]: For positive s and t, we say that our problem is (s, t)-weakly
tractable (WT) if the information complexity is not exponential in ε−s and d t. It turns out that (s, t)-WT strongly
depends on how s and t are related to the smoothness parameter r.

We first suppose that rs > 2 or t > 1. Then (s, t)-WT holds for all weights, including the (most difficult) unweighted
case γd,m = 1. This result was proved for some special cases in [4], with the more general case being established in [5].
This result was extended to include periodic Sobolev spaces with hybrid smoothness in [9].

So it only remains to consider the case in which rs ≤ 2 and t ∈ (0, 1]. Moreover, we further restrict our attention
to product weights having the form

γd,m =

d∏
j=1

γmi
j with 0 < γd ≤ γd−1 ≤ · · · ≤ γ1 ≤ 1,

where the weightlets γ1, γ2, . . . , γd are bounded and dimension-independent. We obtain the following results:

• Let rs = 2 and t ∈ (0, 1]. Then our approximation problem is (s, t)-WT iff

γ j =

o(1) for t = 1,
o
(
(ln j)−1

)
for t ∈ (0, 1),

as j→ ∞.

• Let rs < 2 and t ∈ (0, 1]. Then our approximation problem is (s, t)-WT iff

γ j = o( j−(2−rs)/(rs)) as j→ ∞.

Note the following:
1. The weight conditions do not hold for the unweighted case γ j ≡ 1. This gives us another proof that the un-

weighted case is not (s, t)-WT for any positive s and t such that rs ≤ 2 and t ∈ (0, 1].
2. The dependence on t is only present when rs = 2;

(a) When t = 1, we only require that the weights go to zero, their speed of convergence being irrelevant.
(b) When t < 1 then the weights must go to zero faster than 1/ ln j.

3. The situation is quite different when rs < 2. Now the γ j must then go to zero faster than a polynomial in j−1

whose exponent depends on rs. For small rs, this exponent is large and goes to infinity as rs goes to zero.
Moreover, the speed at which γ j converges is independent of t.

From the results given above, it is easy to obtain weight conditions that are necessary and sufficient for uniform
weak tractability, meaning that (s, t)-WT holds for all positive s and t, as initially studied in [10]. Our problem is
uniformly weakly tractable iff

lim
j→∞

γ j jp = 0 for all positive p,

or (equivalently) iff

lim
j→∞

ln γ−1
j

ln j
= ∞.

We end the introduction by briefly discussing the class Λstd of information, which consists of only function evalu-
ations. It is well-known that the functional Lx( f ) = f (x) for all f ∈ Hr(Td) and x ∈ Td is continuous iff r > d/2. Since
we consider a fixed smoothness parameter r and varying d, the last condition does not hold for large d. In this case, Lx

is not even well-defined. Of course, we can switch to the space Hr(Td)∩C(Td), where C(Td) is a space of continuous
functions. Then Lx is well defined but still is not continuous for d ≥ 2r. It is proven in [11] that discontinuous linear
functionals are useless for approximation of continuous operators. From this result it follows that for the class Λstd

the minimal worst case errors of all algorithms using n function evaluations is equal to the norm of the continuous
operator we consider. In our case, for multivariate approximation, this norm is one. This means that the class Λstd can
be reasonable used for multivariate approximation over the space Hr(Td) only if r = r(d) varies with d and r(d) > d/2.
This is left as a future research project.
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2. Problem description

We shall be using standard notation. In particular, we let N, N0, R and C denote the strictly positive integers, the
non-negative integers, the reals and the complex numbers respectively. We use boldface roman and italic letters to
denote vectors with integer or real components, respectively.

For d ∈ N and for a multi-index k = (k1, . . . , kd) ∈ Nd
0, we write |k| = k1 + · · · + kd. We also write xk =

∏d
j=1 xk j

j

and k · x =
∑d

j=1 k jx j for x ∈ Rd and k ∈ Nd
0. In addition, we write ‖ · ‖`2(Rd) for the usual vector norm

‖x‖`2(Rd) =

( d∑
j=1

x2
j

)1/2
∀ x ∈ Rd.

Let Td = [0, 2π]d denote the d-torus, identifying opposite points, so that f : Td → C satisfies

f (x) = f (y) whenever x − y ∈ 2π{−1, 0, 1}d.

Note that functions defined over Td are periodic, with period 2π. We let L2(Td) denote square-integrable complex-
valued functions defined over Td, with inner product

〈 f , g〉L2(Td) =

∫
Td

f (x)g(x) dx ∀ f , g ∈ L2(Td).

Let
ed,k(x) =

1
(2π)d/2 exp(i k · x) ∀k ∈ Zd, d ∈ N. (2.1)

Then { ed,k : k ∈ Zd } is an orthonormal basis for L2(Td), and we have

f =
∑
k∈Zd

cd,k( f )ed,k ∀ f ∈ L2(Td),

with
cd,k = 〈 f , ed,k〉L2(Td) =

1
(2π)d/2

∫
Td

f (x) exp(−i k · x) dx ∀ f ∈ L2(Td),k ∈ Zd.

Moreover
〈 f , g〉L2(Td) =

∑
k∈Zd

cd,k( f )cd,k(g) ∀ f , g ∈ L2(Td).

For r ∈ N0, let us define a family

Γ =
⋃
d∈N

{
γd,m ∈ (0, 1] : m ∈ Nd

0 such that |m| ≤ r
}

of positive weights. We assume that γd,0 = 1. Let

Hr(Td) = { f ∈ L2(Td) : Dm f ∈ L2(Td) for all m ∈ Zd with |m| ≤ r }

be the classical unweighted Sobolev space, under the standard inner product

〈 f , g〉Hr(Td) =
∑
|m|≤r

〈Dm f ,Dmg〉L2(Td), ∀ f , g ∈ Hr(Td),

where Dm = ∂|m| /(∂m1 x1 · · · ∂
md xd), as usual.

Then the weighted Sobolev space Hr
Γ
(Td) is defined to be Hr(Td), under the inner product

〈 f , g〉Hr
Γ
(Td) =

∑
|m|≤r

γ−1
d,m〈D

m f ,Dmg〉L2(Td).
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Clearly, the norm ‖ · ‖Hr
Γ
(Td) is equivalent to the classical Sobolev norm ‖ · ‖Hr(Td), with(

min
m: |m|≤r

γ−1/2
d,m

)
‖ f ‖Hr(Td) ≤ ‖ f ‖Hr

Γ
(Td) ≤

(
max

m: |m|≤r
γ−1/2

d,m

)
‖ f ‖Hr(Td),

and so Hr
Γ
(Td) is a Hilbert space.

We are ready to define the multivariate approximation problem as

AppΓ = {AppΓ,d : d ∈ N },

where AppΓ,d : Hr
Γ
(Td)→ L2(Td) is given by the canonical embedding

AppΓ,d f = f ∀ f ∈ Hr
Γ(Td).

Clearly, ‖AppΓ,d f ‖L2(Td) ≤ ‖ f ‖Hr
Γ
(Td), with equality for f = 1. This means that

‖AppΓ,d ‖ = 1 for all d and all weights Γ.

We briefly remind the reader about a few standard concepts and results of information-based complexity, see (e.g.)
[1] or [12] for details. Our goal is to approximate

AppΓ,d f = f ≈ An( f ) for f in the Hr
Γ(Td)-unit ball,

where An is an algorithm using information of cardinality at most n, i.e., An( f ) uses the values of at most n continuous
linear functionals on f . Hence we may write

An( f ) = φn
(
L1( f ), L2( f ), . . . , Ln( f )

)
,

where φn : Cn → L2(Td) and the functionals L1, . . . , Ln ∈ [Hr
Γ
(Td)]∗ can all be chosen adaptively, the latter meaning

that
L j = L j

(
·, L1( f ), L2( f ), . . . , L j−1( f )

)
for j ∈ {1, . . . , n}.

The cardinality n can also be chosen adaptively, see [1, 12].
We will measure error in the worst case setting, so that

e(An) = sup
‖ f ‖Hr

Γ
(Td )≤1

‖AppΓ,d f − An( f )‖L2(Td).

Let λd,1 = 1 ≥ λd,2 ≥ · · · > 0 be the eigenvalues of

WΓ,d = App∗Γ,d AppΓ,d : Hr
Γ(Td) → Hr

Γ(Td),

with corresponding eigenvectors ed,1, ed,2, . . . that form an orthonormal basis for Hr
Γ
(Td). It is well-known that the

algorithm

A∗n( f ) =

n∑
k=1

〈 f , ed,k〉Hr
Γ
(Td)ed,k ∀ f ∈ Hr

Γ(Td)

has minimal error among all algorithms using information of cardinality at most n and

e(A∗n) =
√
λd,n+1.

Finally, the information complexity n(ε,AppΓ,d) of our d-variate approximation problem is the minimal n for which
e(A∗n) ≤ ε, where ε ∈ (0, 1). Hence we have

n(ε,AppΓ,d) =
∣∣∣∣{ n ∈ N0 : λd,n+1 > ε

2
}∣∣∣∣ ∀ ε ∈ (0, 1). (2.2)

In addition, the algorithm A∗n with n = n(ε,AppΓ,d) is optimal, in the sense that it provides an approximation having
error at most ε, using information of minimal cardinality.

6



3. Spectral results

We now determine the eigenvalues and eigenvectors of WΓ,d. By the results in the previous section, these results
will allow us to explicitly determine the information complexity (and optimal algorithms) for our problem, which (in
turn) will be needed for studying its tractability.

Lemma 3.1. The set { ed,k : k ∈ Zd }, with ed,k defined by (2.1), is an orthogonal basis for Hr
Γ
(Td), with

‖ed,k‖
2
Hr

Γ
(Td) =

∑
|m|≤r

γ−1
d,mk2m. (3.1)

Proof. Since Dmed,k = (i k)med,k for any k ∈ Zd and m ∈ Nd
0, we may use periodicity to find that

〈v, ed,k〉Hr
Γ
(Td) =

∑
|m|≤r

γ−1
d,m(i k)m〈Dmv, ed,k〉L2(Td)

=
∑
|m|≤r

γ−1
d,m(i k)m〈v,Dmed,k〉L2(Td)

=

(∑
|m|≤r

γ−1
d,mk2m

)
〈v, ed,k〉L2(Td)

∀k ∈ Zd, v ∈ Hr
Γ(Td). (3.2)

In particular,

〈ed,p, ed,k〉Hr
Γ
(Td) =

(∑
|m|≤r

γ−1
d,mk2m

)
δk,p ∀k,p ∈ Zd.

This shows that { ed,k : k ∈ Zd } is orthogonal and (setting p = k) that (3.1) holds. To see that this set is also a basis, let
v ∈ Hr

Γ
(Td) be such that 〈v, ed,k〉Hr

Γ
(Td) = 0 for all k ∈ Zd. From (3.2), it follows that 〈v, ed,k〉L2(Td) = 0 for all k ∈ Zd.

Since { ed,k : k ∈ Zd } is a basis for L2(Td), it follows that v = 0. Thus { ed,k : k ∈ Zd } is a complete orthogonal set, as
required.

Lemma 3.2. Let

λd,k = ‖ed,k‖
−2
Hr

Γ
(Td) =

(∑
|m|≤r

γ−1
d,mk2m

)−1
=

1
1 +

∑
1≤|m|≤r γ

−1
d,mk2m

.

Then { (ed,k, λd,k) : k ∈ Zd } is an eigensystem for WΓ,d.

Proof. For k,p ∈ Zd, we have

〈WΓ,ded,k, ed,p〉Hr
Γ
(Td) = 〈AppΓ,d ed,k,AppΓ,d ed,k〉L2(Td) = 〈ed,k, ed,p〉L2(Td) = δk,p.

Since { ed,k : k ∈ Zd } is a basis for Hr
Γ
(Td), it follows that WΓ,ded,k must be a multiple of ed,k. Letting λd,k be that

multiplier, we have
λd,k‖ed,k‖

2
Hr

Γ
(Td) = 〈WΓ,ded,k, ed,k〉Hr

Γ
(Td) = 〈ed,k, ed,k〉L2(Td) = 1,

and so λd,k = ‖ed,k‖
−2
Hr(Td), as required.

Suppose momentarily that r = 0. Then Hr
Γ
(Td) = L2(Td) and all eigenvalues λd,k = 1. This means that

n(ε,AppΓ,d) = ∞ for all ε ∈ (0, 1) and d ∈ N. Hence, the multivariate approximation problem AppΓ cannot be
solved when r = 0. Hence in the rest of this paper, we shall assume that r ≥ 1. Using (2.2) and Lemma 3.2, it follows
that n(ε,AppΓ,d) < ∞ for all ε ∈ (0, 1) and d ∈ N.
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4. Quasi-polynomial intractability

The following lemma will help us study various kinds of tractability.

Lemma 4.1. Let ν ∈ N, and suppose that ψ : Rν → R satisfies the following conditions:

1. For x ∈ Rν, the function xi ∈ [0,∞) 7→ ψ(x) is non-increasing for any i ∈ {1, . . . , ν}.
2. For x ∈ Rν, the function xi ∈ R 7→ ψ(x) is even for any i ∈ {1, . . . , ν}.

Then
2ν

∑
k∈Nν

ψ(k) ≤
∫
Rν

ψ(x) dx ≤ 2ν
∑
k∈Nν

0

ψ(k).

Proof. By condition (1), we see that for any k ∈ Nν
0, we have

ψ(k + 1) ≤ ψ(x) ≤ ψ(k) ∀ x ∈ [k,k + 1].

Integrating over all x ∈ [k,k + 1], summing over all k ∈ Nν
0 and then multiplying through by 2ν, we find that

2ν
∑
k∈Nν

ψ(k) ≤ 2ν
∫

[0,∞)ν
ψ(x) dx ≤ 2ν

∑
k∈Nν

0

ψ(k).

Since condition (2) implies that ∫
Rν

ψ(x) dx = 2ν
∫

[0,∞)ν
ψ(x) dx,

the desired result holds.

Lemma 4.2. Let ψ : [0,∞)→ R be a non-increasing function. For any ν ∈ N, we have

2ν
∑
k∈Nν

ψ(‖k‖`2(Rν)) ≤
∫
Rν

ψ(‖x‖`2(Rν)) dx ≤ 2ν
∑
k∈Nν

0

ψ(‖k‖`2(Rν)) (4.1)

and ∫
Rν

ψ(‖x‖`2(Rν)) dx =
2πν/2

Γ(ν/2)

∫ ∞

0
ρν−1ψ(ρ) dρ. (4.2)

Proof. The proof of (4.1) is similar to the proof of Lemma 4.1. but starting with the inequality

∀k ∈ Nν
0,∀ x ∈ [k,k + 1] : ψ(‖k + 1‖`2(Rν)) ≤ ψ(‖x‖`2(Rν)) ≤ ψ(‖k‖`2(Rν)).

Equation (4.2) is simply formula 4.642 from [13].

The main result of this section is about quasi-polynomial tractability (“QPT” for short), which was defined in [14].
The problem AppΓ is QPT iff there are positive t and C such that

n(ε,AppΓ,d) ≤ C exp
(
t(1 + ln d)(1 + ln ε−1)

)
∀ d ∈ N, ε ∈ (0, 1].

Note that QPT is weaker than the older notions of polynomial tractability (PT) or strong polynomial tractability (SPT).
For PT we require that there be non-negative numbers p, q and C such that

n(ε,AppΓ,d) ≤ C ε−p d q ∀ d ∈ N, ε ∈ (0, 1].

By SPT, we mean PT with q = 0. Note that SPT =⇒ PT =⇒ QPT; the first implication is trivial, and the second
holds because

ε−p d q ≤ exp
(
max{p, q}(1 + ln d)(1 + ln ε−1)

)
.

Hence a problem that isn’t QPT is clearly not PT (and certainly not SPT).
Recalling that our weights are positive and bounded by one, we have the following result:
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Theorem 4.1. AppΓ is not quasi-polynomially tractable, no matter how the weights are chosen.

Proof. From [3, Theorem 23.2], the problem AppΓ is quasi-polynomially tractable iff there exist κ > 0 and τ > 0 such
that

sup
d∈N

d−κ
∑
k∈Zd

λτ(1+ln d)
d,k < ∞.

Hence if we can show that

for any τ > 0, we can find d ∈ N such that
∑
k∈Zd

λτ(1+ln d)
d,k = ∞, (4.3)

then AppΓ is not quasi-polynomially tractable.
So let τ > 0. Define γd,min = min|m|≤r γd,m. Using Lemma 3.2, we see that

λ−1
d,k = 1 +

∑
1≤|m|≤r

γ−1
d,m

d∏
j=1

k2m j

j ≤ 1 + γ−1
d,min

∑
1≤|m|≤r

d∏
j=1

k2m j

j = 1 + γ−1
d,min

r∑
l=1

∑
|m|=l

d∏
j=1

k2m j

j

≤ 1 + γ−1
d,min

r∑
l=1

( d∑
j=1

k2
j

)l
(using the multinomial identity, similarly to [4])

≤ 1 + r γ−1
d,min‖k‖

2r
`2(Rd).

Let ψ(ρ) = (1 + r γ−1
d,minρ

2r)−τ(1+ln d), which is obviously a decreasing function of ρ ∈ [0,∞). Using Lemma 4.2, we
have ∑

k∈Zd

λτ(1+ln d)
d,k ≥

∑
k∈Nd

0

ψ(‖k‖`2(Rd)) ≥ 2−d 2πd/2

Γ(d/2)

∫ ∞

0
ρd−1ψ(ρ) dρ

=
πd/2

2d−1Γ(d/2)

∫ ∞

0

ρd−1 dρ
(1 + rγ−1

d,minρ
2r)τ(1+ln d)

.

For sufficiently large d, we have d ≥ 2rτ(1 + ln d), in which case the integral above is infinite. Thus for any τ > 0, we
can find d ∈ N such that (4.3) holds, and hence AppΓ is not quasi-polynomially tractable, as claimed.

5. (s, t)-weak tractability for product weights

We have found that our problem is never QPT, no matter how we choose weights. Can some weaker kind of
tractability hold? In particular, we wish to consider conditions under which AppΓ is (s, t)-weakly tractable for some
positive s and t (“(s, t)-WT” for short), meaning that

lim
ε−1+d→∞

ln n(ε,AppΓ,d)
ε−s + d t = 0,

with the convention that ln 0 = 0. Hence, (s, t)-WT means that n(ε,AppΓ,d) is not exponential in ε−s and d t. This con-
cept was introduced in [5], as a generalization of weak tractability, which is simply (1, 1)-weak tractability. Moreover,
a problem that is (s, t)-WT for all positive s and t is said to be uniformly weakly tractable (UWT), as defined in [10].

Since γd,m ≤ 1, our problem is no harder than the analogous approximation problem Appd : Hr(Td) → L2(Td) in
the unweighted case, i.e., when all γd,m = 1. From [5], we know that App = {Appd : d ∈ N } is (s, t)-weakly tractable
iff either rs > 2 or t > 1. Hence, we have the following corollary:

Corollary 5.1. Let rs > 2 or t > 1. Then no matter how the (strictly positive) weights are chosen, AppΓ is (s, t)-weakly
tractable.
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So it will suffice to restrict our attention to the case where rs ≤ 2 and t ∈ (0, 1]. We shall consider product weights,
which have the form

γd,m =

d∏
j=1

γmi
d, j ∀m ∈ Nd

0, d ∈ N.

Note that for product weights, we have γd,0 = 1, as required for this paper.
Our goal is to characterize (s, t)-WT in terms of how quickly the weightlets γd, j go to zero.
Looking at Lemma 3.2, we see that the eigenvalues of WΓ,d now have the form

λd,k =

[∑
|m|≤r

d∏
j=1

(
γ−1

d, jk
2
j

)m j
]−1
∀k ∈ Zd, d ∈ N

for such product weights. Observe that λd,k does not depend on the order of the weightlets γd, j. Therefore without loss
of generality we may assume that the weightlets are ordered, i.e., for all d ∈ N we have

0 < γd,d ≤ γd,d−1 ≤ · · · ≤ γd,1 ≤ 1.

Based on the multinomial identity and on the criterion for (s, t)-WT presented in [8, Theorem 3.1], we show the
following lemma.

Lemma 5.1. For c > 0, s > 0 and t > 0, let

µ(c, s, t) = sup
d∈N

[
σ(c, d, s) exp

(
−c d t

)]
,

where
σ(c, d, s) =

∑
k∈Zd

exp
(
−c̃λ−s/2

d,k

)
(5.1)

and

λ̃d,k =

(
1 +

d∑
j=1

γ−1
d, jk

2
j

)−r
.

Then AppΓ is (s, t)-weakly tractable iff

µ(c, s, t) < ∞ for all positive c.

Proof. As in [4], we may use the multinomial identity to see that

λ−1
d,k ≤ λ̃

−1
d,k ≤ r! λ−1

d,k.

We complete the proof by using [8, Theorem 3.1].

Note that the weightlets are allowed to depend on d. However, our main results are only for dimension-independent
weightlets, in which γd, j is independent of d, so we shall only consider such weights. Recall our previous assumptions
that weightlets are ordered and belong to the interval (0, 1]. So in the remainder of this paper, we shall assume that

γd, j ≡ γ j for j ∈ {1, . . . , d} and d ∈ N, (5.2)

with
0 < γd ≤ γd−1 ≤ · · · ≤ γ1 ≤ 1. (5.3)

We later distinguish between the cases rs = 2 and rs < 2. Before doing so, we prove a lemma that will be useful
for both of these cases.

Lemma 5.2. Let AppΓ be (s, t)-WT, where rs ∈ (0, 2] and t ∈ (0, 1]. Then

γd = o
(

1
d(2−rs)/(rs)

)
as d → ∞. (5.4)
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Proof. Since AppΓ is (s, t)-WT, Lemma 5.1 tells us that for all positive c, we have

ln µ(c, s, t) = sup
d∈N

(
ln σ(c, d, s) − c d t

)
< ∞, (5.5)

where σ(c, d, s) is defined by (5.1). Noting that

d∑
j=1

γ−1
j k2

j ≤

d∑
j=1

γ−1
j ∀k ∈ {−1, 0, 1}d.

and
∣∣∣{−1, 0, 1}d

∣∣∣ = 3d, it follows that

σ(c, d, s) ≥ exp
[(

1 +

d∑
j=1

γ−1
j

)rs/2]
3d.

Since t ∈ (0, 1], we have

ln µ(c, s, t) ≥ lnσ(c, d, s) − c d ≥ d

ln 3 −
c

(
1 +

∑d
j=1 γ

−1
j

)rs/2

d
− c

 .
Since rs/2 ≤ 1, Jensen’s inequality and 1 ≤ γ−1

1 ≤ γ
−1
2 ≤ · · · ≤ γ

−1
d yield that

(
1 +

d∑
j=1

γ−1
j

)rs/2
≤ 1 +

( d∑
j=1

γ−1
j

)rs/2
≤ 1 + d rs/2γ−rs/2

d ≤ 2d rs/2γ−rs/2
d .

Therefore
ln µ(c, s, t) ≥ d

(
ln 3 − c2drs/2−1γ−rs/2

d − c
)

∀ d ∈ N.

Taking positive c < ln 3, we find that

ln 3 − c
2c

(
1 −

ln µ(c, s, t)
d

)
≤

1

d(2−rs)/2 γrs/2
d

∀ d ∈ N.

Without loss of generality, we may assume that d ≥ 1
2 ln µ(c, s, t). The previous inequality implies that

ln 3 − c
4c

≤
1

d(2−rs)/2 γrs/2
d

for such d, and so

γd ≤

(
4c

ln 3 − c

)2/(rs) 1
d(2−rs)/(rs) .

Since c can be arbitrarily small we conclude that γd = o(d−(2−rs)/(rs)), as claimed.

We now characterize (s, t)-WT for the case rs = 2.

Theorem 5.1. Let rs = 2 and t ∈ (0, 1]. Then

AppΓ is (s, t)-WT iff γ j =

o(1) for t = 1,
o
(
(ln j)−1

)
for t ∈ (0, 1),

as j→ ∞.
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Proof. For necessity, suppose that AppΓ is (s, t)-WT; we shall show that the conditions of Theorem 5.1 hold. Us-
ing (5.4) with rs = 2, we find that γ j = o(1) as j→ ∞. So we only need to look at the case t ∈ (0, 1).

We claim that

lim sup
d→∞

1
d t

d∑
j=1

ln
(
1 + 2 exp(−c γ−1

j )
)
≤ c (5.6)

for sufficiently small c. Indeed, since rs = 2, we have

σ(c, s, t) ≥
∑

k∈{−1,0,1}d
exp

[
−c

(
1 +

d∑
j=1

γ−1
j k2

j

)]

= exp(−c)
∑

k∈{−1,0,1}d

d∏
j=1

exp
(
−c γ−1

j k2
j

)
≥ exp(−c)

d∏
j=1

(
1 + 2 exp(−c γ−1

j )
)
.

Hence for all d ∈ N, we have

ln µ(c, s, t) ≥ ln σ(c, d, s) − c d t ≥

d∑
j=1

ln
(
1 + 2 exp(−c γ−1

j )
)
− c − cd t,

which we may rewrite as
1
d t

d∑
j=1

ln
(
1 + 2 exp(−c γ−1

j )
)
≤

ln µ(c, s, t) + c
d t + c.

Since (5.5) holds, our desired result (5.6) now follows.
Since c > 0, we have 2 exp(−cγ−1

j ) ∈ (0, 2]. Since x ∈ (0, 2] 7→ ln(1 + x)/x is a decreasing function, we have
ln(1 + x) ≥ c1x for x ∈ (0, 2], where c1 = 1

2 ln 3 .
= 0.549306. Using this inequality, along with (5.6) and the fact that

γ1 ≥ γ2 ≥ · · · ≥ γd, we see that

2c ≥
1
d t

d∑
j=1

ln
(
1 + 2 exp(−cγ−1

j )
)
≥ 2c1 exp(−cγ−1

d ) d1−t.

for sufficiently large d. Therefore
d1−t exp(−cγ−1

d ) ≤
c
c1

for large d.

Take logarithms to find that

(1 − t) ln d − c γ−1
d ≤ ln

(
c
c1

)
for large d,

and so
γd ≤

c
(1 − t) ln d − ln(c/c1)

for large d. (5.7)

Since t < 1 and c > 0 can be arbitrarily small, we see that γd = o
(
(ln d)−1

)
as d → ∞, as required.

We now show that the conditions of Theorem 5.1 suffice for AppΓ to be (s, t)-WT. Note that

σ(c, d, s) =
∑
k∈Zd

exp
[
−c

(
1 +

d∑
j=1

γ−1
j k2

j

)]
≤

d∏
j=1

∑
k∈Z

exp
(
−cγ−1

j k2
)

=

d∏
j=1

[
1 + 2

∞∑
k=1

exp
(
−c γ−1

j k2
)]
≤

d∏
j=1

[
1 + 2

∞∑
k=1

exp
(
−c γ−1

j k
)]

≤

d∏
j=1

[
1 +

2 exp(−c γ−1
j )

1 − exp(−c γ−1
j )

]
.

(5.8)
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Suppose first that t = 1. In this case, γ j = o(1) as j → ∞, and we want to show that AppΓ is (s, 1)-WT. Let η > 0,
to be chosen later. There exists jη ∈ N such that γ j ≤ η for j ≥ jη. Thus (5.8) implies that

σ(c, d, s) ≤ Cη

d∏
j= jη

[
1 +

2 exp(−c γ−1
j )

1 − exp(−c γ−1
j )

]
≤ Cη

[
1 +

2 exp(−c η−1)
1 − exp(−c η−1)

]d

,

where

Cη =

jη−1∏
j=1

[
1 +

2 exp(−c γ−1
j )

1 − exp(−c γ−1
j )

]
.

Since ln(1 + x) ≤ x for positive x, we have

ln σ(c, d, s) ≤ ln Cη + d ln
(
1 +

2 exp(−c η−1)
1 − exp(−c η−1)

)
≤ ln Cη + d

(
2 exp(−c η−1)

1 − exp(−c η−1)

)
(5.9)

Choose
η =

c

ln
2 + c

c

,

so that
2 exp(−c η−1)

1 − exp(−c η−1)
= c. (5.10)

Using (5.9)–(5.10), we see that

ln µ(c, s, 1) = sup
d∈N

(ln σ(c, d, s) − c d) ≤ sup
d∈N

(
(ln Cη + c d) − c d

)
= ln Cη < ∞,

and hence AppΓ is (s, 1)-WT, as claimed.
Now suppose that t < 1. In this case, γ j = o((ln j)−1) as j → ∞ . We want to show that AppΓ is (s, t)-WT. Let

η > 0, to be chosen later. There exists jη ∈ N with jη ≥ 2, such that γ j ≤ η/ ln j for j ≥ jη. Then

2 exp(−c γ−1
j )

1 − exp(−c γ−1
j )
≤

2 exp(−c η−1 ln j)
1 − exp(−c η−1 ln j)

=
2 j−c/η

1 − j−c/η for j ≥ jη.

Letting

Cη =

jη−1∏
j=1

(
1 +

2 j−c/η

1 − j−c/η

)
,

we see from (5.8) that

σ(c, d, s) ≤ Cη

d∏
j= jη

(
1 +

2 j−c/η

1 − j−c/η

)
.

Taking logarithms, we find that

ln σ(c, d, s) ≤ ln Cη + 2
d∑

j= jη

j−c/η

1 − j−c/η .

In particular, if we choose η = 1
2 c, then 1 − j−c/η ≥ 3

4 , and so we have

ln σ(c, d, s) ≤ ln Cη + 8
3

d∑
j= jη

j−2 ≤ ln Cη + 8
3

∞∑
j=1

j−2 = ln Cη + 4
9π

2.

Hence
ln µ(c, s, t) = sup

d∈N

(
ln σ(c, d, s) − c d t

)
≤ sup

d∈N
ln σ(c, d, s) ≤ ln Cη + 4

9π
2 < ∞,

and so AppΓ is (s, t)-WT, as required.
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We now take up the case rs < 2.

Theorem 5.2. Let rs < 2 and t ∈ (0, 1]. Then

AppΓ is (s, t)-WT iff γ j = o( j−(2−rs)/(rs)) as j→ ∞.

Proof. In Lemma 5.2, we showed that the condition on {γ j} j∈N was necessary. Therefore we only need to prove the
sufficiency of this condition.

Let α := rs/2 < 1. For c > 0 and d ∈ N, let

σ̃(c, d) =
∑
k∈Zd

exp
[
−c

(
1 +

d∑
j=1

γ−1
j k2

j

)α]
.

By Lemma 5.1, the problem AppΓ is (s, t)-WT iff

µ̃(c, t) < ∞ for all positive c, (5.11)

where
µ̃(c, t) = sup

d∈N

[
σ̃(c, d) exp

(
−c d t

)]
.

Since γ j = o( j−(2−rs)/(rs)), it follows that for any κ > 0 and any M ≥ κ/c there exists ` = `(M) ∈ N such that

1
γ j
≥

1 for j ≤ `,
M1/α j(1−α)/α for j > `.

We will determine the value of κ later on.
We need to get an upper bound on σ̃(c, d). Since σ̃(c, d) is an increasing function of d, it is enough to consider

d > `. Using the inequality

(ξ1 + ξ2)α ≥
1

21−α

(
ξα1 + ξα2

)
∀ ξ1, ξ2 ≥ 0, (5.12)

we find that

σ̃(c, d) ≤
∑
k∈Zd

exp
[
−c

21−α

(
1 +

∑̀
j=1

k2
j

)α
+
−cM
21−α

( d∑
j=`+1

k2
j j(1−α)/α

)α]
Letting

C` =
∑
k∈Z`

exp

 −c
21−α

(
1 +

∑̀
j=1

k2
j

)α ,
which is finite and independent of d, we may rewrite the previous inequality as

σ̃(c, d) ≤ C`

∑
k∈Zd−`

exp
[
−cM
21−α

(d−∑̀
j=1

k2
j ( j + `)(1−α)/α

)α]
.

Define
Vd−`,n = {k ∈ Zd−` : k has n nonzero components } ∀ n ∈ {0, 1, . . . , d − `}.

For u ⊆ {1, 2, . . . , d − `}, let Nu denote n-dimensional integer vectors, indexed by the elements of u, so that for
u = { j1, j2, . . . , jd−`}, we have

k = [k j] j∈u = [k j1 , k j2 , . . . , k jd−` ] ∀k ∈ Nu.
We then have

σ̃(c, d) ≤ C`

d−∑̀
n=0

∑
k∈Vd−`,n

exp
[
−cM
21−α

(d−∑̀
j=1

k2
j ( j + `)(1−α)/α

)α]

≤ C`

d−∑̀
n=0

∑
u⊆{1,2,...,d−`}
|u|=n

2n
∑
k∈Nu

exp
[
−cM
21−α

(∑
j∈u

k2
j ( j + `)(1−α)/α

)α]
.
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Hence, we obtain

σ̃(c, d) ≤ C`

d−∑̀
n=0

an2n
(
d − `

n

)
, (5.13)

where

an =


∑
k∈Nn

exp
[
−cM
21−α

( n∑
j=1

k2
j ( j + `)(1−α)/α

)α]
for n ∈ {1, . . . , d − `},

1 for n = 0,

because for any fixed u with |u| = n > 1, we have

exp
[
−cM
21−α

( n∑
j=1

k2
j ( j + `)(1−α)/α

)α]
≤ an.

Estimating the binomial coefficient in (5.13) by dn/n!, we have

σ̃(c, d) ≤ C`

d−∑̀
n=0

an2n dn

n!
. (5.14)

We now estimate an for n ∈ {1, 2, . . . , d − `}. Letting

Wn,m = {k ∈ Nn : n − m of k’s components equal 1 } for m ∈ {0, 1, . . . , n},

and noting that k2 ≥ (k − 1)2 + 1 for k ∈ N, we have

an =

n∑
m=0

∑
k∈Wn,m

exp
[
−cM
21−α

( n∑
j=1

k2
j ( j + `)(1−α)/α

)α]
=

n∑
m=0

∑
u⊆{1,2,...,n}
|u|=m

∑
k∈(N\{1})u

exp
[
−cM
21−α

(∑
j<u

( j + `)(1−α)/α +
∑
j∈u

k2
j ( j + `)(1−α)/α

)α]

≤

n∑
m=0

∑
u⊆{1,2,...,n}
|u|=m

∑
k∈(N\{1})u

exp
[
−cM
21−α

(∑
j<u

( j + `)(1−α)/α +
∑
j∈u

[(k j − 1)2 + 1]( j + `)(1−α)/α
)α]

=

n∑
m=0

∑
u⊆{1,2,...,n}
|u|=m

∑
k∈Nu

exp
[
−cM
21−α

( n∑
j=1

( j + `)(1−α)/α +
∑
j∈u

k2
j ( j + `)(1−α)/α

)α]

≤

n∑
m=0

∑
u⊆{1,2,...,n}
|u|=m

∑
k∈Nu

exp

 −cM
22(1−α)

[( n∑
j=1

( j + `)(1−α)/α
)α

+

(∑
j∈u

k2
j ( j + `)(1−α)/α

)α] ,
where we have used (5.12) in the last step above. Letting

bm =
∑

k∈Nm

exp
[
−cM
41−α

( m∑
j=1

k2
j ( j + `)(1−α)/α

)α]
and

cn = exp
[
−cM
41−α

( n∑
j=1

( j + `)(1−α)/α
)α]

for n ∈ {1, . . . , d − `},

we have

an ≤ cn

n∑
m=0

bm

(
n
m

)
≤ 2ncn sup

m∈N0

bm. (5.15)
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First, let us estimate cn. We have( n∑
j=1

( j + `)(1−α)/α
)α
≥

(∫ n

0
(x + `)(1−α)/α dx

)α
= αα(n + `)

1 − (
`

n + `

)1/αα .
Since n ≥ 1, there exists Cα > 0, independent of n, such that( n∑

j=1

( j + `)(1−α)/α
)α
≥ Cα(n + `),

and so
cn ≤ exp (−ωn) with ω =

cM
41−α Cα. (5.16)

We next show that b := supm∈N0
bm is finite. Indeed, we may use Lemma 4.1 to see that

bm ≤ 2−m
∫
Rm

exp
[
−cM
41−α

( m∑
j=1

( j + `)(1−α)/αx2
j

)α]
dx

= 2−m
[41−α

cM

]m/(2α)[ `!
(` + m)!

](1−α)/(2α) ∫
Rm

exp
[
−

( m∑
j=1

t2
j

)α]
dt,

where we have used the change of variables

t j =

( cM
41−α

)1/(2α)

( j + `)(1−α)/(2α)x j (1 ≤ j ≤ m).

Using Lemma 4.2, we have ∫
Rm

exp
[
−

( m∑
j=1

t2
j

)α]
dt =

2πm/2

Γ(m/2)

∫ ∞

0
xm−1 exp(−x2α) dx

Using the change of variables t = x2α, we have∫ ∞

0
xm−1 exp(−x2α) dx =

1
2α

∫ ∞

0
t(m−1)/(2α)+1/(2α)−1 exp(−t) dt =

1
2α

Γ

( m
2α

)
,

so that ∫
Rm

exp
[
−

( m∑
j=1

t2
j

)α]
dt =

πm/2

α

Γ

( m
2α

)
Γ

(m
2

) ,
and hence

bm ≤
1
α

(
41−2απα

cM

)m/(2α) (
`!

(m + `)!

)(1−α)/(2α) Γ

( m
2α

)
Γ

(m
2

) . (5.17)

It is well-known that

ln
Γ

( m
2α

)
Γ

(m
2

) =

(
1

2α
−

1
2

)
(m ln m) + O(m) as m→ ∞,

where the O-factor is independent of m. Furthermore,

ln
(

`!
(m + `)!

)(1−α)/(2α)

=

(
1

2α
−

1
2

)
(−m ln m) + O(m) as m→ ∞,
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where the O-factor is once again independent of m. Therefore

ln bm = −
m
2α

ln(cM) + O(m) as m→ ∞.

Since M ≥ κ/c, the last right-hand side can be upper bounded by −m/(2α) ln(κ) + Cm for some positive C, Hence if
we choose κ > exp(2Cα), then ln bm goes to −∞ with m. Hence, b = supm bm < ∞, as claimed.

From (5.15) and (5.16), we find that

an ≤ b · 2n exp (−ω n) with ω =
cM
41−αCα. (5.18)

We now substitute (5.18) back into (5.14), getting

σ̃(c, d) ≤ b C`

d∑
n=0

βn, (5.19)

where
βn =

(4d)n

n!
e−ωn.

Note that
βn+1

βn
=

4d
(n + 1)eω

,

which is a decreasing function of n ∈ N0. Hence the maximum value of βn would occur when βn+1/βn = 1, i.e., when
n = ñ := 4de−ω − 1. Since ñ might not be an integer, the maximum value of βn will occur at βn∗ , where n∗ is either bñc
or dñe. In any case, we have

n∗ = 4de−ω
(
1 + O(d−1)

)
as d → ∞,

and

σ̃(c, d) ≤ b C` (d + 1)βn∗ = b C` (d + 1)
(4d)n∗

(n∗)!
e−ω n∗ .

Hence,

ln σ̃(c, d) = ln d + n∗ ln(4d) − ln(n∗!) − ω n∗ + O(1)

=
[
4de−ω ln(4d) − 4de−ω

(
ln

(
4de−ω

)
+ ω

)]
+ O(ln d)

= O
(
ln d

)
,

the last line holding because the terms in the square brackets cancel each other out.
Since t > 0, this proves that σ̃(c, d) exp(−c d t) is uniformly bounded in d. Thus condition (5.11) is satisfied and so

we see that AppΓ is (s, t)-WT, as required.

6. Uniform weak tractability

Based on the results of the previous section it is easy to conclude what are necessary and sufficient conditions on
product weights to obtain UWT (uniform weak tractability), see [10]. Recall, that AppΓ is UWT iff it is (s, t)-WT for
all positive s and t.

Theorem 6.1. Consider AppΓ with product weights and with 0 < γd ≤ γd−1 ≤ · · · γ1 ≤ 1. Then

AppΓ is UWT iff γ j = o( j−p) as j→ ∞ for all p > 0.
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Proof. Obviously, it is enough to consider only large p. In what follows we assume that p > 1.
Suppose that AppΓ is UWT. Then AppΓ is (s, t)-WT for s = 2/

(
r(p+1)

)
and t ∈ (0, 1]. Note that rs = 2/(p+1) < 1.

Since (2− rs)/(rs) = p, Theorem 5.2 yields that γ j = o( j−p) as j→ ∞. By varying s, we can make p arbitrarily large,
as needed.

Now suppose that γ j = o( j−p) as j → ∞ for all p > 1. Then for s = 2/
(
r(p + 1)

)
and t ∈ (0, 1] we have

γ j = o( j−(2−rs)/(rs)) as j→ ∞. Thus Theorem 5.2 yields that AppΓ is (s, t)-WT. By varying p we can obtain arbitrarily
small s, and thus UWT holds.

Hence, UWT holds iff γ j goes faster to zero than any power of j. For instance, if γ j = exp(− j), we have UWT.
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[8] A. G. Werschulz, H. Woźniakowski, A new characterization of (s, t)-weak intractability, J. Complexity 38 (2017)
68–79. doi:http://dx.doi.org/10.1016/j.jco.2016.10.006.

[9] M. Weimar, (s, t)-weak tractability, in: A. Hinrichs, J. F. Traub, H. Woźniakowski, L. Yaroslavtseva (Eds.),
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[12] J. F. Traub, G. W. Wasilkowski, H. Woźniakowski, Information-Based Complexity, Academic Press, New York,
1988.

[13] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, 8th Edition, Elsevier/Academic Press,
Amsterdam, 2015, translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and
Victor Moll.
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