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Abstract A great deal of work has studied the tractability of approximating (in the
L2-norm) functions belonging to weighted unanchored Sobolev spaces of dominat-
ing mixed smoothness of order 1 over the unit d-cube. In this paper, we gener-
alize these results. Let r and s be non-negative integers, with r ≤ s. We consider
the approximation of complex-valued functions over the torus Td = [0,2π]d from
weighted spaces Hs,1

Γ
(Td) of hybrid smoothness, measuring error in the Hr(Td)-

norm. Here we have isotropic smoothness of order s, the derivatives of order s
having dominating mixed smoothness of order 1. If r = s = 0 , then H0,1(Td) is
a well-known weighted unachored Sobolev space of dominating smoothness of or-
der 1, whereas we have a generalization for other values of r and s. Besides its
independent interest, this problem arises (with r = 1) in Galerkin methods for solv-
ing second-order elliptic problems. Suppose that continuous linear information is
admissible. We show that this new approximation problem is topologically equiv-
alent to the problem of approximating Hs−r,1

Γ
(Td) in the L2(Td)-norm, the equiva-

lence being independent of d. It then follows that our new problem attains a given
level of tractability if and only if approximating Hs−r,1

Γ
(Td) in the L2(Td)-norm has

the same level of tractability. We further compare the tractability of our problem to
that of L2(Td)-approximation for H0,1

Γ
(Td). We then analyze the tractability of our

problem for various families of weights.
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1 Introduction

Much recent research in information-based complexity has dealt with the issue of
tractability. To what extent is it computationally feasible to solve this problem? To
get an idea of the scope of this area, see the three-monograph series [7, 8, 9]. Most
of the work in this area has dealt with the integration problem (which was the initial
impetus for studying tractability in the first place) and the approximation problem
(mainly in Lp-norms, with most of the work for the case p = 2). This paper deals
with the latter.1

It has long been known that the L2-approximation problem for the unit ball of
Hs(Id) over the unit d-cube Id has nth minimal error Θ(n−s/d), so that Θ(ε−d/s)
information evaluations are necessary and sufficient for an ε-approximation. Were
it not for the Θ -factors, this would imply that this problem suffers from what Richard
Bellman [1] called “the curse of dimensionality”, i.e., an exponential dependence on
the dimension d. It turns out that things are not quite as bad as this. To avoid some
technical difficulties, we’ll use spaces Hs(Td) defined over the d-torus Td , rather
than over the d-dimensional unit cube Id . Kühn et al. [5] showed that the Θ -factors
decay polynomially in d, and that this problem does not suffer from the curse of
dimensionality.

However, we would much prefer something stronger; in particular, we would
like to have polynomial tractability, with nth minimal error at most Cdqε−p for C
p, and q independent of ε and d or (better yet) strong polynomial tractability, with
nth minimal error at most Cε−p for C and p independent of ε and d. However, the
results in [5] imply that the aforementioned problem is not polynomially tractable.
So if we want a better tractability result, we need to change the space of functions
being approximated.

Now the spaces Hs(Td) are isotropic—all variables are equally important. This
has led many authors to use anisotropic spaces. In particular, we have used weighted
spaces that (algebraically) are tensor products of H1(I), with the weight family Γ

entering into the norm. These are weighted versions of spaces having mixed smooth-
ness, as per [6]. In [11], we were able to find conditions on certain weights fami-
lies Γ that were necessary and sufficient for the L2(Td)-approximation problem to
be (strongly) polynomially tractable.

We would like to extend these results to weighted spaces of hybrid smoothness,
see [10]. These are weighted versions of the spaces Hs1,s2(Td), the members of
which being periodic functions having isotropic smoothness of order s1 and domi-
nating mixed smoothness of order s2.

In this paper, we make a first step in such a study. We will consider spaces Hs,1
Γ

(Td).
Functions belonging to this space have Sobolev derivatives of order s, said deriva-
tives themselves having one derivative in each coordinate direction. The weights
only apply to the anisotropic part of the Hs,1(Td)-norm. We measure error in the
Hr(Td)-sense. Here r and s are non-negative integers, with r ≤ s.

1 This introduction is merely an overview. Precise definitions are given in Section 2.
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We have an ulterior motive for studying these particular spaces. Suppose we
are trying to solve the elliptic problem −∆u + qu = f over Td , with f ,q in the
unit ball of H0,1(Td). Suppose further that we have an elliptic regularity result,
saying that u ∈ H2,1

Γ
(Td) for f ,q ∈ H0,1

Γ
(Td). Then the error of a Galerkin method

using an optimal test/trial space will roughly be the minimal error for the H1(Td)-
approximation problem over H2,1(Td). This explains our interest in the Hr(Td)-
approximation problem for Hs,1

Γ
(Td) with r = 1 and s = 2. In this paper, we study

the general case (with r ≤ s), which is as easy to handle as the special case r = 1
and s = 2. In addition, we expect the results of this paper to hold for negative r; this
is important because the case r = −1 occurs in non-regular second-order elliptic
problems, see (e.g.) [3] for further discussion.

The overall structure of this paper is as follows. In Section 2, we precisely define
the terminology surrounding the problem we’re trying to solve. The results we seek
depend on spectral information of a particular linear operator on Hs,1

Γ
(Td), which

we give in Section 3. Finally, Section 4 gives the tractability results for our approx-
imation problem:

1. If AppΓ ,0,0 has a given level of tractability, then AppΓ ,r,s has at least the same
level of tractability, and the exponent(s) for AppΓ ,r,s are bounded from above by
those for AppΓ ,0,0.

2. Under certain boundedness conditions, AppΓ ,r,s has a given level of tractability
iff AppΓ ,0,0 has at least the same level of tractability. We give estimates relating
the exponents for these two problems.

3. For the unweighted case, AppΓ ,r,s is quasi-polynomially tractable, with exponent
2/ ln 2 .

= 2.88539.
4. For bounded product weights:

a. AppΓ ,r,s is always quasi-polynomially tractable. We give an estimate of the
exponent.

b. We give conditions on the weights that are necessary and sufficient to guaran-
tee (strong) polynomial tractability, along with estimates of the exponents.

5. For bounded finite-order and finite-diameter weights, AppΓ ,r,s is always polyno-
mially tractable. We give estimates for the exponents.

2 Problem Definition

In this section, we define the approximation problem to be studied and recall some
basic concepts of information-based complexity.

First, we establish some notational conventions. We let N denote the strictly pos-
itive integers, with N0 = N∪{0} denoting the natural numbers. (As usual, we let
Z denote the integers.) Next, we let T denote the torus [0,2π], so that Td is the d-
torus. We identify opposite points on the d-torus, so that for any f : Td → C, we
have f (xxx) = f (yyy) whenever xxx− yyy ∈ 2π Zd . In this sense, functions on the d-torus
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are periodic. We denote points in Rd by boldface italic letters, and points in Zd (in-
cluding multi-indices) by boldface roman letters. The unit ball of a normed space X
is denoted by BX . Any product over the empty set is defined to be the appropriate
multiplicative identity.

We now describe some Sobolev spaces, see (e.g.) [4, 5, 10, 13] for further dis-
cussion. Let L2(Td) denote the space of complex-valued square-integrable functions
over Td and let r ∈ N0. Then

Hr(Td) =
{

f ∈ L2(Td) : Dm f ∈ L2(Td) for |m| ≤ r
}
,

is the (classical) isotropic Sobolev space of order r, which is a Hilbert space under
the usual inner product

〈 f ,g〉Hr(Td) = ∑
|m|≤r
〈Dm f ,Dmg〉L2(Td).

Here, for m = (m1,m2, . . . ,md) ∈ Nd
0 , we write

Dm =
d

∏
j=1

∂ m j

∂x
m j
j

and zzzm =
d

∏
j=1

z
m j
j ∀zzz = (z1, . . . ,zd) ∈ Cd ,

as well as |m| = ∑
d
j=1 m j. Here, the partial derivative ∂/∂x j is in the distributional

sense.
For s ∈ N0, we define the space2

Hs,1(Td) = {v ∈ Hs(Td) : ∂uv ∈ Hs(Td) for all u⊆ [d]}

of hybrid smoothness, which is a Hilbert space under the inner product

〈v,w〉Hs,1(Td) = ∑
u⊆[d]
〈∂uv,∂uw〉Hs(Td) ∀v,w ∈ Hs,1

Γ
(Td).

Here, we write

∂u = ∏
i∈u

∂

∂xi
∀u⊆ [d],

where [d] := {1,2, . . . ,d}.
Our final Sobolev space is a weighted version of the space Hs,1(Td). Let

Γ = {γd,u ≥ 0 : u⊆ [d],d ∈ N}

be a given set of non-negative weights γd,u, with γu, /0 = 1 for all d ∈ N. Then we let
Hs,1

Γ
(Td) be Hs,1(Td), but under the inner product

2 The superscript 1 in Hs,1(Td) means that we are taking dominating mixed derivatives of order 1.
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〈v,w〉Hs,1
Γ

(Td)
= ∑

u⊆[d]
γd,u>0

γ
−1
d,u〈∂uv,∂uw〉Hs(Td) ∀v,w ∈ Hs,1

Γ
(Td). (1)

Clearly Hs,1
Γ

(Td) is a Hilbert space under this inner product.
We now describe the problem we wish to solve. Let r,s∈N0, with r≤ s. Our goal

is to approximate functions from BHs,1
Γ

(Td) in the Hr(Td)-norm. This approxi-
mation problem is described by the embedding operator Appd,Γ ,r,s : Hs,1

Γ
(Td) →

Hr(Td), which is defined as

Appd,Γ ,r,s f = f ∀ f ∈ Hs,1
Γ

(Td).

Remark 1. We note some special cases of this problem:

1. Suppose that r = s = 0. Then Appd,Γ ,r,s = Appd,Γ ,0,0, and our problem is that of
approximating functions from BH0,1

Γ
(Td) in the L2(Td)-norm. This problem is

analogous to the problem that was extensively covered in [11], the main differ-
ence being that [11] dealt with functions defined over the unit cube, rather than
the unit torus.

2. Let Γ ( /0) be given by

γd,u =

{
1 if u= /0,
0 otherwise.

∀u⊆ [d],d ∈ N.

Allowing a slight abuse of language, we call Γ ( /0) empty weights. Then Appd,Γ ,r,s =

Appd,Γ ( /0),r,s, and our problem is that of approximating functions from BHs(Td)

in the Hr(Td)-norm. This problem was studied for the case r = 0 in [5, 13] and
for arbitrary r ≥ 0 in [10].

3. Let Γ (UNW) be defined as

γd,u = 1 ∀u⊆ [d].

Then Appd,Γ ,r,s = Appd,Γ (UNW),r,s and we are trying to solve the unweighted case.
Our problem is now that of approximating functions from BHs,1(Td) in the
Hr(Td)-norm. A non-periodic version of this problem (over the unit cube, rather
than the torus) was discussed in [11, Section 4.1.1].

4. If Γ (Π) is a set of weights defined by

γd,u = ∏
j∈u

γd, j ∀u⊆ [d],d ∈ N, (2)

where
γd,1 ≥ γd,2 ≥ ·· · ≥ γd,d > 0 ∀d ∈ N, (3)

the Γ (Π) is said to be a set of product weights. We may refer to the set {γd, j :
j ∈ [d],d ∈ N} as being the weightlets for Γ (Π).



6 Arthur G. Werschulz

5. We say that Γ (FOW) is a family of finite-order weights if there exists ω ∈ N0
such that

γd,u = 0 for all d ∈ N and u such that |u|> ω.

The smallest ω for which this holds is said to be the order of Γ (FOW). As a
special case, we say that Γ (FDW) is a family of finite-diameter weights if

γd,u = 0 for all d ∈ N and all u with diam(u)≥ q.

The smallest q for which this holds is said to be the diameter of Γ (FDW). ut

Remark 2. We can slightly simplify the sum appearing in (1), as in [12]. If we adopt
the convention that 0/0 = 0, we can write

〈v,w〉Hs,1
Γ

(Td)
= ∑

u⊆[d]
γ
−1
d,u〈∂uv,∂uw〉Hs(Td) ∀v,w ∈ Hs,1

Γ
(Td),

provided that we require

∂uw = 0 for any u⊆ [d] such that γd,u = 0 ∀w ∈ Hs,1
Γ

(Td).

Of course, if ∂uv = 0, then ∂vw = 0 for any superset v of u. This imposes the natural
condition

γd,u = 0 =⇒ γd,v = 0 for any v⊆ [d] for which v⊇ u. (4)

In the remainder of this paper, we shall assume that (4) holds. Now suppose that
γd, j = 0 for some j ∈ [d] and d ∈ N. Using (4), we see that γd,u = 0 for any u con-
taining j as an element, and so the variable x j plays no part in the problem Appd,Γ ,r,s.
So there is no essential loss of generality in assuming that

γd, j > 0 ∀ j ∈ [d],d ∈ N. (5)

In the remainder of this paper, we shall also assume that (5) holds for product
weights. ut

An approximation is given by an algorithm Ad,Γ ,r,s,n using at most n linear func-
tionals on Hs,1

Γ
(Td). That is, there exist continuous linear functionals L1,L2 . . . ,Ln

on Hs,1
Γ

(Td) and a function φn : Rn→ Hr(Td) such that

Ad,Γ ,r,s,n( f ) = φn (L1( f ),L2( f ), . . . ,Ln( f )) ∀ f ∈BHs,1
Γ

(Td).

The worst case error of Ad,Γ ,n,r,s is given by

e(Ad,Γ ,r,s,n) = sup
f∈BHs,1

Γ
(Td)

‖ f −Ad,Γ ,r,s,n f‖Hr(Td).

For simplicity’s sake, we measure the cost of an algorithm by the number of infor-
mation evaluations it uses.
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Let ε > 0 be a given error tolerance. An algorithm yields an ε-approximation
if its error is at most ε . We define the information complexity n(ε,Appd,Γ ,r,s) as
the minimal number of linear functionals defined on Hs,1

Γ
(Td) needed to find an

algorithm whose error as most ε .
As in [11], we have ‖Appd,Γ ,r,s ‖= 1. Hence it follows that

e(0,Appd,Γ ,r,s) = e(Ad,r,s,0,Appd,Γ ,r,s) = 1,

where Ad,r,s,0 is the zero algorithm defined by

Ad,Γ ,r,s,0 f ≡ 0 ∀ f ∈ Hs,1
Γ

(Td).

Thus n(ε,Appd,Γ ,r,s) = 0 for ε ≥ 1. So in the remainder of this paper, we assume
that ε ∈ (0,1), since the problem is trivial otherwise.

It is well-known that there exist algorithms with arbitrarily small error iff the
operator Appd,Γ ,r,s is compact. Since we want to find ε-approximations for any ε ∈
(0,1), we shall assume that Appd,Γ ,r,s is compact in the remainder of this paper. This
compactness holds if either r < s (by Rellich’s Theorem, see e.g. [2, pg. 219]) or if
at least one of the weights γd,u is positive (from the results in [11]).

Let
{(

λd,n,ed,n
)}

n∈N denote the eigensystem of Wd,Γ ,r,s = App∗d,Γ ,r,s Appd,Γ ,r,s,

with Hs,1
Γ

(Td)-orthonormal eigenvectors ed,n and with the eigenvalues λd,n forming
a non-increasing sequence

λd,1 = 1≥ λd,2 ≥ ·· ·> 0,

Then the algorithm

An( f ) =
n

∑
i=1
〈 f ,ed,i〉Hs,1

Γ
(Td)

ed,i =
n

∑
i=1

λ
−1
d,i 〈 f ,ed,i〉L2(Td)ed,i ∀ f ∈BHs,1

Γ
(Td)

minimizes the worst case error among all algorithms using n linear functionals
on Hs,1

Γ
(Td), with error

e(An) =
√

λd,n+1,

so that
n(ε,Appd,Γ ,r,s) = inf{n ∈ N0 : λd,n > ε

2 }. (6)

We are now ready to describe various levels of tractability for the approximation
problem AppΓ ,r,s = {Appd,Γ ,r,s}d∈N. This problem can satisfy any of the follow-
ing tractability criteria, listed in decreasing order of desirability, see [7] for further
discussion.

1. The problem is strongly (polynomial) tractable if there exists p≥ 0 such that

n(ε,Appd,Γ ,r,s)≤C
(

1
ε

)p

∀ε ∈ (0,1),d ∈ N. (7)
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When this holds, we define

p(AppΓ ,r,s) = inf{ p≥ 0 : (7) holds}

to be the exponent of strong tractability.
2. The problem is (polynomially) tractable if there exist non-negative numbers C,

p, and q such that

n(ε,Appd,Γ ,r,s)≤C
(

1
ε

)p

dq ∀ε ∈ (0,1),d ∈ N. (8)

Numbers p = p(AppΓ ,r,s) and q = q(AppΓ ,r,s) such that (8) holds are called ε-
and d-exponents of tractability; these need not be uniquely defined.

3. The problem is quasi-polynomially tractable if there exist C ≥ 0 and t ≥ 0 such
that

n(ε,Sd)≤C exp
(
t(1+ lnε

−1)(1+ lnd)
)

∀ε ∈ (0,1),∀d ∈ N. (9)

The infimum of all t such that (9) holds is said to be the exponent of quasi-
polynomial tractability, denoted tqpoly.

4. Let t1 and t2 be non-negative numbers. The problem is (t1, t2)-weakly tractable if
non-negative numbers, with

lim
ε−1+d→∞

ln n(ε,Appd,Γ ,r,s)

ε−t1 +dt2
> 0. (10)

The problem is said to be weakly tractable if it is (1,1)-weakly tractable, and
uniformly weakly tractable if it is (t1, t2)-weakly tractable for all positive t1 and t2.
For more details, see [10].

5. The problem is intractable if it is not (t1, t2)-weakly tractable for any non-
negative t1 and t2.

6. The problem suffers from the curse of dimensionality if there exists c > 1 such
that3

n(ε,Appd,Γ ,r,s)≥ cd ∀d ∈ N. (11)

3 Spectral Results

If we want to follow the prescription for determining minimal error algorithms for
our problem, we clearly need to know the eigenvalues and eigenvectors of Wd,Γ ,r,s.
That’s what we’ll be doing in this section.

First, a bit more notation. Let i =
√
−1. For k = (k1,k2, . . . ,kd) ∈ Zd and xxx =

(x1,x2, . . . ,xd) ∈ Td , let k · xxx = ∑
d
j=1 k jx j. Define

3 We follow [5, (5.3)] in using 1+ c with c > 0 rather than c > 1.
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ed,k(xxx) =
1

(2π)d/2 exp(ik · xxx) ∀xxx ∈ Td .

For any f ∈ Hr(Td), we have

Dm f = ∑
k∈Zd

(ik)mcd,k( f )ed,k for |m| ≤ r,

where
cd,k( f ) =

∫
Td

f (xxx) exp(−ik · xxx)dxxx

is the kth Fourier coefficient of f and convergence is in the L2(Td)-sense.

Theorem 1. For k ∈ Zd , let

λd,k,Γ ,r,s =
βd,r,k

βd,s,k
αd,k,Γ , (12)

where

αd,k,Γ =

(
∑

u⊆[d]
γd,u>0

γ
−1
d,u ∏

j∈u
k2

j

)−1

(13)

and
βd,r,k = ∑

|m|≤r
k2m. (14)

Then the following hold:

1. The vectors {ed,k}k∈Zd form an orthogonal basis for Hs,1
Γ

(Td), with

‖ed,k‖2
Hs,1

Γ
(Td)

= α
−1
d,k,Γ βd,s,k ∀k ∈ Zd . (15)

2. The vectors {ed,k}k∈Zd form an orthogonal basis for Hr(Td), with

‖ed,k‖2
Hr(Td)

= βd,r,k ∀k ∈ Zd . (16)

3. The eigensystem of Wd,Γ ,r,s is given by
{(

λd,k,Γ ,r,s,ed,k
)}

k∈Zd , so that

Wd,Γ ,r,sed,k = λd,k,Γ ,r,s ed,k ∀k ∈ Zd . (17)

4. The information complexity is given by

n(ε,Appd,Γ ,r,s) =
∣∣∣{k ∈ Zd : λd,k,Γ ,r,s > ε

2 }
∣∣∣ . (18)

Proof. For part 1, we need to show that that {ed,k}k∈Zd is an orthogonal basis
for Hs,1

Γ
(Td). Let v ∈ Hs,1

Γ
(Td). Now for any k ∈ Zd and any u⊆ [d], we have
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∂uDmed,k = ∏
j∈u

(−ik j)
d

∏
j=1

(−ik j)
m j ed,k = (−i)|u|+|m|kmed,k

and so we may integrate by parts and use periodicity to see that

〈∂uDmv,∂uDmed,k〉L2(Td) = (−1)|u|+|m|〈v,∂ 2
uD2med,k〉L2(Td)

= (−1)|u|+|m|(−i)2(|u|+m|)
(

∏
j∈u

k2
j

)
k2|m|〈v,ed,k〉L2(Td)

=

(
∏
j∈u

k2
j

)
k2m〈v,ed,k〉L2(Td).

Hence for any k ∈ Zd , we have

〈v,ed,k〉Hs,1
Γ

(Td)
= ∑

u⊆[d]
γd,u>0

γ
−1
d,u〈∂uv,∂ued,k〉Hs(Td)

= ∑
u⊆[d]
γd,u>0

γ
−1
d,u ∑
|m|≤s
〈∂uDmv,∂uDmed,k〉L2(Td)

=

(
∑

u⊆[d]
γd,u>0

γ
−1
d,u ∏

j∈u
k2

j

)(
∑
|m|≤s

k2|m|
)
〈v,ed,k〉L2(Td)

= α
−1
d,k,Γ βd,s,k〈v,ed,k〉L2(Td).

(19)

In particular, we see that

〈ed,p,ed,k〉Hs,1
Γ

(Td)
= α

−1
d,k,Γ βd,s,k δp,k ∀k,p ∈ Zd , (20)

with δk,p being the Kronecker delta. Hence {ed,k}k∈Zd is an Hs,1
Γ

(Td)-orthogonal
set, the norm of whose elements being given by (15). To see that this set is a ba-
sis, we need only show that this set is Hs,1

Γ
(Td)-complete. So let v ∈ Hs,1

Γ
(Td)

satisfy 〈v,ed,k〉Hs,1
Γ

(Td)
= 0 for all k ∈ Zd . Once again using (19), it follows that

〈v,ed,k〉L2(Td) = 0 for all k∈Zd . Since {ed,k}k∈Zd is an orthogonal basis for L2(Td),

it follows that v = 0. Hence {ed,k}k∈Zd is Hs,1
Γ

(Td)-complete, as required.
Setting Γ = Γ ( /0) in part 1, we immediately have part 2.
To see that part 3 holds, note that

〈Wd,Γ ,r,sed,k,ed,p〉Hs,1
Γ

(Td)
= 〈ed,k,ed,p〉Hr(Td) = βd,r,k δk,p, ∀k,p ∈ Zd ,

the second equality following from part 2. Since {ed,k}k∈Zd is an orthogonal basis
for Hs,1

Γ
(Td), it follows that Wd,Γ ,r,sed,k must be a multiple of ed,k, which means

that ed,k is an eigenvector of Wd,Γ ,r,s. Thus Wd,Γ ,r,sed,k = λd,k,Γ ,r,sed,k for some
λd,k,Γ ,r,s > 0, with
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λd,k,Γ ,r,s =
‖ed,k‖2

Hr(Td)

‖ed,k‖2
Hs,1

Γ
(Td)

, (21)

as usual. Part 3 follows once we use (15) and (16) in (21).
Finally, part 4 follows immediately from (6), along with the remaining parts of

this theorem. ut
As a special case, let s = r. Then the problem Appd,Γ ,r,r is equivalent to the

problem Appd,Γ ,0,0:

Corollary 1. The following results hold for the problem Appd,Γ ,r,r:

1. The operators Wd,Γ ,r,r and Wd,Γ ,0,0 both have
{(

ed,k,αd,k,Γ
)}

k∈Zd as their eigen-
systems.

2. Minimal errors, minimal error algorithms, and levels of tractability are the same
for our problem Appd,Γ ,r,r and for the problem Appd,Γ ,0,0. ut

Just as we have reduced the problem Appd,Γ ,r,r to the problem Appd,Γ ,0,0, we can
also reduce the problem Appd,Γ ,r,s to the simpler problem Appd,Γ ,0,s−r. Let

ηd,k = 1+
d

∑
j=1

k2
j . (22)

We then have

Theorem 2. Let r,s ∈ N0, with s≥ r.

1. The eigenvectors of Wd,Γ ,r,s are given by {ed,k : k ∈ Zd }.
2. The eigenvalues of Wd,Γ ,r,s satisfy the inequality

1
r!(s− r)!

λd,k,Γ ,0,s−r ≤
1
r!

αd,k,Γ

η
s−r
d,k
≤ λd,k,Γ ,r,s ≤ s!

αd,k,Γ

η
s−r
d,k
≤ s!λd,k,Γ ,0,s−r (23)

for all k ∈ Zd .

Proof. Let d ∈N and k ∈ Zd . As in [5], we may use the multinomial theorem to see
that

βd,`,k ≤ η
`
d,k ≤ `!βd,`,k. ∀` ∈ N0.

We then have

1
r!(s− r)!βd,s−r,k

≤ 1
r!η

s−r
d,k
≤

βd,r,k

βd,s,k
≤ s!

η
s−r
d,k
≤ s!

βd,s−r,k
.

This result now follows from Theorem 1 and (18). ut
From Theorem 2, we see that minimal errors for our problem Appd,Γ ,r,s and for

the simpler problem Appd,Γ ,0,s−r are essentially the same.
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4 Tractability Results

We now compare the tractability of our problem AppΓ ,r,s = {Appd,Γ ,r,s}d∈N with
the problem AppΓ ,0,0 = {Appd,Γ ,0,0}d∈N. The papers [11, 12] studied this latter
problem, except for functions defined over the unit cube instead of the unit torus.

4.1 General Weights

We first give tractability results that hold for any weights, regardless of their struc-
ture (or lack thereof), depending only some boundedness conditions. Our main re-
sult is that our approximation problem AppΓ ,r,s has the same level of tractability as
the problem AppΓ ,0,0, which is the periodic version of the problem studied in [12].
In what follows, we let

Md = max
{

1,max
j∈[d]

γd,{ j}

}
and md = min

u⊆[d]
γd,u>0

γd,u. (24)

Clearly both Md and md are positive numbers.
First, we compare the information complexity of these problems.

Theorem 3. For all d ∈ N and ε ∈ (0,1), we have

n(ε,Appd,Γ ,r,s)≥ n
((

r!Ms−r
d

)1/(2(s−r+1))
ε

1/(s−r+1),Appd,Γ ,0,0

)
, (25)

n(ε,Appd,Γ ,r,s)≤ n

((
ms−r

d
s!

)1/(2(s−r+1))

ε
1/(s−r+1),Appd,Γ ,0,0

)
, (26)

and

n(ε,Appd,Γ ,r,s)≤ n(ε,Appd,Γ ,0,0). (27)

Proof. We first show that (25) holds. Let k ∈ Zd . From (5), (13), (18), and (22), it
follows that

α
−1
d,k,Γ ≥ 1+

d

∑
j=1

γ
−1
d, j k

2
j ≥ 1+min

j∈[d]
γ
−1
d, j

d

∑
j=1

k2
j ≥M−1

d

(
1+

d

∑
j=1

k2
j

)
= M−1

d ηd,k.

Since η
−1
d,k ≥M−1

d αd,k,Γ , we may use Theorem 2 to see that

λd,k,Γ ,r,s ≥
1
r!

αd,k,Γ

η
s−r
d,k
≥ 1

r!Ms−r
d

α
s−r+1
d,k,Γ .

Using part 4 of Theorem 1 and the previous estimate, we now have
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n(ε,Appd,Γ ,r,s) =
∣∣∣{k ∈ Zd : λd,k,Γ ,r,s > ε

2 }
∣∣∣

≥
∣∣∣∣{k ∈ Zd :

1
r!Ms−r

d
α

s−r+1
d,k,Γ > ε

2
}∣∣∣∣

=
∣∣∣{k ∈ Zd : αd,k,Γ >

(
r!Ms−r

d ε
2)1/(s−r+1)

}∣∣∣
= n

((
r!Ms−r

d

)1/(2(s−r+1))
ε

1/(s−r+1),Appd,Γ ,0,0

)
,

as required.
The proof of (26) is similar to that of (25), except that we start with the bound

α
−1
d,k,Γ = ∑

u⊆[d]
γd,u>0

γ
−1
d,u ∏

j∈u
k2

j ≤ m−1
d ∑

u⊆[d]
γd,u>0

∏
j∈u

k2
j ≤ m−1

d βd,1,k = m−1
d ηd,k.

Finally, (27) follows from (18) and Theorem 1. ut
We now show that the level of tractability of our problem AppΓ ,r,s is often the

same as that of the problem AppΓ ,0,0.

Theorem 4. If AppΓ ,0,0 has a given level of tractability, then AppΓ ,r,s has at least
the same level of tractability, and the exponent(s) for AppΓ ,r,s are bounded from
above by those for AppΓ ,0,0. Moreover, recalling the defintion (24) of Md , we have
the following:

1. If
M := sup

d∈N
Md < ∞ (28)

then the following hold:

a. AppΓ ,r,s is strongly polynomially tractable iff AppΓ ,0,0 is strongly polynomi-
ally tractable, in which case the exponents of strong tractability satisfy the
inequality

1
s− r+1

p(AppΓ ,0,0)≤ p(AppΓ ,r,s)≤ p(AppΓ ,0,0). (29)

b. AppΓ ,r,s is quasi-polynomially tractable iff AppΓ ,0,0 is quasi-polynomially
tractable, in which case the exponents of strong quasi-polynomial tractability
satisfy the inequality

1
max

{
s− r, 1

2 ln(r!Ms−r)
}
+1

tqpoly(AppΓ ,0,0)≤ tqpoly(AppΓ ,r,s)

≤tqpoly(AppΓ ,0,0).

(30)

2. If
sup
d∈N

d−qMd < ∞ (31)
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for some q≥ 0, then AppΓ ,r,s is polynomially tractable iff AppΓ ,0,0 is polynomi-
ally tractable.

Proof. The first statement in the theorem follows immediately from (27).
For part 1, suppose that (28) holds.
We first prove part 1(a). From the first statement in the theorem, it suffices to

show that if AppΓ ,r,s is strongly polynomially tractable, then the same is true for
AppΓ ,0,0, and that the first inequality in (29) holds. So let AppΓ ,r,s ben strongly
polynomially tractable, so that for any p > p(AppΓ ,r,s), there exists C > 0 such that

n(ε,Appd,Γ ,r,s)≤Cε
−p ∀ε ∈ (0,1),d ∈ N.

Set
εd =

(
r!Ms−r

d

)1/(2(s−r+1))
ε

1/(s−r+1), (32)

so that
ε
−1 = (r!Ms−r

d )1/2
ε
−(s−r+1)
d .

Using (25) and (32), we see that

n(εd ,Appd,Γ ,0,0)≤ n(ε,Appd,Γ ,r,s)≤Cε
−p =C

(
Ms−r

d r!
)p/2

ε
−(s−r+1)p
d

≤C
(
Ms−rr!

)p/2
ε
−(s−r+1)p
d .

Varying ε > 0, we see that εd can assume arbitrary positive values here. Since p may
be chosen arbitrarily close to p(AppΓ ,r,s), we see that AppΓ ,0,0 is strongly polyno-
mially tractable, and that (29) holds, as required.

We now prove part 1(b). It suffices to show that if AppΓ ,r,s is strongly quasi-
polynomially tractable, then so is AppΓ ,0,0, and that the first inequality in (30)
holds. So suppose that AppΓ ,0,0 is quasi-polynomially tractable. Then for any
t > tqpoly(AppΓ ,0,0), there exists C > 0 such that

n(ε,Appd,Γ ,r,s)≤C exp
(
t(1+ lnε

−1)(1+ lnd)
)

∀ε ∈ (0,1),d ∈ N.

Once again, define εd by (32) and use (25) to see that

n(εd ,Appd,Γ ,0,0)≤ n(ε,Appd,Γ ,r,s)≤C exp
(
t(1+ lnε

−1)(1+ lnd)
)

=C exp
[
t
(
1+(s− r+1) lnε

−1
d + 1

2 ln(r!Ms−r
d )

)
(1+ lnd)

]
≤C exp

[
t
(
1+(s− r+1) lnε

−1
d + 1

2 ln(r!Ms−r)
)
(1+ lnd)

] (33)

Define g : [0,∞)→ [0,∞) as

g(ξ ) =
1+(s− r+1)ξ + 1

2 ln(r!Ms−r)

1+ξ
∀ξ ≥ 0.

We find that
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sup
ξ≥0

g(ξ ) = max
{

g(0), lim
ξ→∞

g(ξ )
}
= max

{
s− r, 1

2 ln(r!Ms−r)
}
+1.

From (33), we now see that

n(εd ,Appd,Γ ,0,0)≤C exp
(
t1(1+ lnε

−1
d )(1+ lnd)

)
,

where
t1 = t sup

d∈N
g(lnε

−1
d ) = t

(
max

{
s− r, 1

2 ln(r!Ms−r)
}
+1
)
. (34)

Arguing as in the strongly polynomial case, we see that AppΓ ,0,0 is quasi-polynomially
tractable, with

tqpoly(AppΓ ,r,s)≤
(
max

{
s− r, 1

2 ln(r!Ms−r)
}
+1
)

tqpoly(AppΓ ,0,0),

as required.
For part 2, suppose that (31) holds, so that M := supd∈N d−qMd < ∞. Suppose

also that AppΓ ,r,s is polynomially tractable, so that there exist positive C, `, and p
such that such that

n(ε,Appd,Γ ,0,0)≤Cd`
ε
−p ∀d ∈ N,ε ∈ (0,1).

Once again defining εd as in (32), we have

n(εd ,Appd,Γ ,0,0)≤C d`
ε
−p =C d`(r!Ms−r

d )p/2
ε
−(s−r+1)p
d

≤C d`(r!Ms−r)p/2
ε
−(s−r+1)p
d .

Hence AppΓ ,0,0 is polynomially tractable. ut

Remark 3. The non-trivial results in Theorem 4 hold when the boundedness condi-
tions (28) or (31) are satisfied. Suppose that we allow unbounded weights. Although
the tractability of AppΓ ,r,s is no worse than the tractability of AppΓ ,0,0, we can say
nothing in the opposite direction in this case. As an extreme example, we show
a choice of (unbounded) weights such that AppΓ ,r,s to be strongly polynomially
tractable, but for which AppΓ ,0,0 suffers from the curse of dimensionality.

Define our weight set Γ as

γd,u =


1 if u= /0,
(1+ c)2d if u= {1},
0 otherwise.

This is actually a sequence of univariate problems, for which

α1,k,Γ =
(

1+(1+ c)−2d
)

k2 and η1,k = 1+ k2.

From Theorem 2, we see that the eigenvalues of W1,Γ ,r,s satisfy
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λ1,k ≤ s!
α1,k,Γ

η
s−r
1,k

=
s!(

1+(1+ c)−2d(1+ k2)
)
(1+ k2)s−r

≤ s!
(1+ k2)s−r .

Hence we may use (23) to see that

n(ε,Appd,Γ ,r,s)≤
∣∣∣∣{k ∈ Z :

s!
(1+ k2)s−r > ε

2
}∣∣∣∣= 2

⌊√(
s!
ε2

)
−1

⌋
−1

=Θ

(
ε

1/(s−r)
)
,

and so AppΓ ,r,s is strongly polynomially tractable, provided that r < s. On the other
hand, we have

n(ε,Appd,Γ ,0,0)‘ = |{k ∈ Z : α1,k,Γ > ε
2 }|= |{k ∈ Z : 1+(1+ c)−2dk2 > ε

2 }|

= 2
⌊
(1+ c)d

√
ε−2−1

⌋
−1 =Θ

(
(1+ c)d

ε
−1
)
,

and so AppΓ ,0,0 suffers from the curse of dimensionality. ut

Remark 4. If we are willing to live with an upper bound that depends on d, we
can improve the ε-exponent in Theorem 4. (This is an example of the tradeoff of
exponents, as described several places in [7].) To be specific, suppose that AppΓ ,0,0
is strongly polynomially tractable,. Then for any p> p(AppΓ ,0,0), there exists C > 0
such that

n(ε,Appd,Γ ,0,0)≤Cε
−p ∀ε ∈ (0,1),d ∈ N.

Choosing such a p, d, and ε , let

εd =

(
ms−r

d
s!

)1/(2(s−r+1))

ε
1/(s−r+1),

where md is defined by (24). Using (26), the previous inequality tells us that

n(ε,Appd,Γ ,r,s)≤ n(εd ,AppΓ ,0,0)≤C
(

s!
ms−r

d

)p/(2(s−r+1))

ε
−p/(s−r+1). (35)

Let m = infd∈N md . There are two cases to consider:

1. Suppose that m > 0. Then the Hs,1
Γ

(Td)-norms are equivalent to the Hs,1(Td)-
norms, with equivalence factors independent of d. As we shall see in Sec-
tion 4.2, the problems AppΓ (UNW),r,s and AppΓ (UNW),0,0 are both quasi-polyno-
mially tractable, each having exponent 2/ ln2 .

= 2.88539. Hence the same is true
for the problems AppΓ ,r,s and AppΓ ,0,0. Thus part 1(a) of Theorem 4 never comes
into play when m > 0, and so the estimate (35) does not apply.

2. Suppose that m = 0. Then the bound (35) truly depends on d. To cite two exam-
ples:

• Suppose that md ≥Cα d−α for some α > 0 and Cα > 0. Using (35), and letting
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C1 =C
(

s!
Cs−r

α

)p/(2(s−r+1))

,

we see that

n(ε,Appd,Γ ,r,s)≤C1 dα p(s−r)/(2(s−r+1))
ε
−p/(s−r+1).

Since p can be chosen arbitrarily close to p(AppΓ ,0,0), this is a polynomially-
tractable upper bound on n(ε,Appd,Γ ,r,s), with

d-exponent:
α(s− r) p(AppΓ ,0,0)

2(s− r+1)
and ε

−1-exponent:
p(AppΓ ,0,0)

s− r+1
.

• Suppose that for any α > 0, there exists Cα > such that md ≥ Cα d−α . (For
instance, this holds if md is bounded from below by a power of log d.) We
now see that the results of the previous case hold for positive α , no matter
how small. Hence we find that AppΓ ,r,s is polynomially tractable for such Γ ,
with

d-exponent: 0 and ε
−1-exponent:

1
s− r+1

p(AppΓ ,0,0).

This is close to, but not identical to, a strong polynomial bound for which

p(AppΓ ,r,s) =
1

s− r+1
p(AppΓ ,0,0). (36)

We might describe such a bound as being almost strongly polynomial. ut

Remark 5. From Remark 4 we see that the left-hand inequality in (29) cannot be
improved. However, this fact does not imply that there are problems for which (36)
holds. To see that such problems do exist, suppose we choose our weights as

γd,u =

{
1 if u= /0 or u= {1},
0 otherwise.

We claim that (36) holds for this problem. Indeed, the eigenvalues of Wd,Γ ,0,0 are
given by 1/(1 + k2) for k ∈ Z, so that Theorem 2 tells us that the eigenvalues
of Wd,Γ ,r,s are bounded from below by 1/

(
r!(1+ k2)s−r+1

)
and from above by

s!/(1+ k2)s−r+1. It now follows that n(ε,AppΓ ,0,0) =Θ(ε−1) and n(ε,AppΓ ,r,s) =

Θ(ε−1/(s−r+1)). Since p(AppΓ ,0,0) = 1 and p(AppΓ ,r,s) = 1/(s− r + 1), we see
that (36) holds, as claimed. ut

Remark 6. Note that Theorem 4 doesn’t mention (r1,r2)-weak tractability. That’s
because (r1,r2)-weak tractability simply never arises. To see this, we distinguish
between two cases:
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1. Suppose that we allow Γ to contain an unbounded sequence of weights. Using
Remark 3, we can find a case in which AppΓ ,0,0 suffers from the curse of dimen-
sionality, but AppΓ ,r,s is strongly polynomially tractable.

2. The alternative is to suppose that the weights are uniformly bounded, with
M = supd∈N maxu⊆[d] γd,u < ∞. We claim that AppΓ ,0,0 is always (at least) quasi-
polynomially tractable in this case, so that the same is true for AppΓ ,r,s by
part 1(b) of Theorem 4.
Indeed, to see that AppΓ ,0,0 with weights bounded by M is always (at least)
quasi-polynomially tractable, note that this problem is no harder than the prob-
lem AppΓ ,0,0 for which γd,u ≡M. From Theorem 1, we see that the eigenvalues
of this latter problem are given by

λd,k,Γ ,0,0 = αd,k,Γ = M
d

∏
j=1

1
1+ k2

j
.

As in Remark 4, this latter problem is quasi-polynomially tractable.. Hence
AppΓ ,0,0 is at least quasi-polynomially tractable, as claimed. ut

The right-hand inequality in Theorem 3 may be summarized as saying that
our approximation problem Appd,Γ ,r,s is no harder than the approximation prob-
lem Appd,Γ ,0,0 studied in [11]. The left-hand inequality tells us that Appd,Γ ,r,s may
be easier than Appd,Γ ,0,0. Despite this gap, we find that these two problems some-
times share the same level of tractability, as we shall see in what follows.

4.2 The Unweighted Case

If we specify the structure of the weights, we can get more detailed results. We first
look at the unweighted case Γ = Γ (UNW), see item 1 in Remark 1. Our main result
is that this problem is quasi-polynomially tractable.

Theorem 5. Suppose that Γ = Γ (UNW). Let

τ
∗ =

1
ln 2

.
= 1.44270 (37)

and

c1 =

(
∞

∑
j=−∞

(
1

1+ k2

)τ∗
)1/τ∗

.
= 2.09722.

Then
n(ε,Appd,Γ (UNW),r,s)≤ c1 exp

(
2τ
∗(1+ lnd)(1+ lnε

−1)
)
,

and so AppΓ (UNW),r,s is quasi-polynomially tractable. Moreover, its exponent is

tqpoly(AppΓ (UNW),r,s) = 2τ
∗ =

2
ln 2

.
= 2.88539.
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Proof. From [7, Theorem 23.2], we have

tqpoly(AppΓ (UNW),r,s) = 2 inf{τ > 0 : Cτ < ∞},

where
Cτ = sup

d∈N
Cτ,d ,

with

Cτ,d =
1
d2

(
∑

k∈Zd

λ
τ(1+lnd)
d,k,Γ1,r,s

)1/τ

.

Moreover,

n(ε,AppΓ (UNW),r,s)≤Cτ
τ exp

(
2τ(1+ lnε

−1)(1+ ln d)
)

for any τ > 0 such that Cτ < ∞. It suffices to show that τ∗ is the minimal τ for which
Cτ < ∞.

Choose τ > 0 such that Cτ < ∞; we must show that τ ≥ τ∗. For any p > 0,
Theorem 2 tells us that

∑
k∈Zd

λ
p
d,k,Γ (UNW),r,s ≥

(
1

(s− r)!

)p

∑
k∈{0,1}d

(
αd,k,Γ (UNW)

η
s−r
d,k

)p

.

But for k ∈ {0,1}d , we have

ηd,k = 1+
d

∑
j=1

k2
j ≤ 1+d

and

αd,k,Γ (UNW) =
d

∏
j=1

1
1+ k2

j
=
( 1

2

)|{ j∈[d]:k j=1}|
.

Hence for any p≥ 0, we have

∑
k∈Zd

λ
p
d,k,Γ (UNW),r,s ≥

(
1

(s− r)!(1+d)s−r

)p

∑
k∈{0,1}d

( 1
2

)p|{ j∈[d]:k j=1}|

=

(
1

(s− r)!(1+d)s−r

)p d

∑
j=0

(
d
j

)( 1
2

)p j

=

(
1

(s− r)!(1+d)s−r

)p [
1+
( 1

2

)p
]d

.

Let p = τ(1+ lnd) and take logarithms. Then

ln
[

∑
k∈Zd

λ
τ(1+lnd)
d,k,Γ (UNW),r,s

]
≥ d ln

[
1+
( 1

2

)τ(1+lnd)
]
−τ(1+ lnd) ln

(
(s− r)!(1+d)s−r).
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Since ln(1+δ )≥ δ − 1
2 δ 2 for δ ≥ 0, we have

ln
[
1+
( 1

2

)τ(1+lnd)
]
≥
( 1

2

)τ(1+lnd)
(

1−
( 1

2

)τ(1+ln d)+1
)
.

Since d ∈ N and τ > 0, we have
( 1

2

)τ(1+ln d)+1 ≤
( 1

2

)τ+1 ≤ 1
2 , and so

ln
[
1+
( 1

2

)τ(1+lnd)
]
≥ 1

2

( 1
2

)τ(1+lnd)
= 2−(τ+1)d−τ ln 2.

Without loss of generality, let d ≥ 2, so that

τ(1+ lnd) ln
(
(s− r)!(1+d)s−r)
≤ τ

(
1+

1
ln 2

)2

ln2 d + τ

(
1+

1
ln 2

)
[ln(s− r)!+(s− r) ln d].

Thus

ln
[

∑
k∈Zd

λ
τ(1+lnd)
d,k,Γ (UNW),r,s

]
≥ 2−(τ+1)d1−τ ln 2− τ

(
1+

1
ln 2

)2

ln2 d−

τ

(
1+

1
ln 2

)
[ln(s− r)!+(s− r) ln d],

and so

lnCτ,d = τ
−1 ln

[
∑

k∈Zd

λ
τ(1+lnd)
d,k,Γ (UNW),r,s

]
−2lnd

≥ τ
−12−(τ+1)d1−τ ln 2

−

[(
1+

1
ln 2

)2

ln2 d +

[
3+

1
ln 2

(s− r)
]

ln d +

(
1+

1
ln 2

)
ln(s− r)!

]
.

Since supd∈NCτ,d must be finite, we see that the exponent of d must be non-positive.
Hence we must have

τ ≥ τ
∗ =

1
ln 2

.
= 1.44270,

as required.
It remains to show that Cτ∗ < ∞. From (27), it suffices to show that Cτ∗ < ∞

for AppΓ ,0,0. Suppose first that d = 1. Again using (27), we see that

λ1,k,Γ (UNW),r,s ≤ λ1,k,Γ (UNW),0,0 =
1

1+ k2 ,

and so

Cτ∗
τ∗,1 ≤ c1 := ∑

k∈Z
λ

τ∗
1,k,Γ (UNW),0,0 =

∞

∑
k=−∞

(
1

1+ k2

)τ∗

.



Tractability of Approximation For Some Weighted Spaces of Hybrid Smoothness 21

Since the terms in the series are Θ(k−2τ∗), with τ∗
.
= 1.44270, the series converges;

using Mathematica, we find that c1
.
= 2.09722.

Now suppose that d ≥ 2. Since

λd,k,Γ (UNW),r,s ≤ λd,k,Γ (UNW),0,0 ≤ αd,k,Γ (UNW) =
d

∏
j=1

1
1+ k2

j
,

we have

Cτ∗
τ∗,d ≤

1
d2 ∑

k∈Zd

λ
τ∗(1+lnd)
d,k,Γ (UNW),0,0 ≤

1
d2 ∑

k1∈Z
∑

k2∈Z
. . . ∑

kd∈Z

( d

∏
j=1

1
1+ k2

j

)τ∗(1+lnd)

=
1
d2

[
∞

∑
k=−∞

(
1

1+ k2

)τ∗(1+lnd)]d

.

(38)

Since d ≥ 2 and τ∗ = 1/ ln 2, we have

∞

∑
k=−∞

(
1

1+ k2

)τ∗(1+ln d)

=
∞

∑
k=−∞

(de)− ln(1+k2)/ ln 2

=
1
de

∞

∑
k=−∞

(de)− ln[(1+k2)/2]/ ln 2

≤ 1
de

∞

∑
k=−∞

(2e)− ln[(1+k2)/2]/ ln 2

=
1
de

∞

∑
k=−∞

(
2

1+ k2

)1+1/ ln 2

.

(39)

Since the terms in the series

c2 :=
∞

∑
k=−∞

(
2

1+ k2

)1+1/ ln 2

(40)

are Θ( j−2(1+1/ ln 2)) and 2(1+1/ ln 2)> 1, the series converges; again using Math-
ematica, we find that c2

.
= 7.70707. Combining (38)–(40), we find that

sup
d≥2

Cτ∗
τ∗,d ≤ sup

d≥2

1
d2

( c2

de

)d
=

1
4

( c2

2e

)2
=: c3,

where c3
.
= 0.502423, which is finite, completing the proof for the case d ≥ 2. Com-

bining the results for d = 1 and d ≥ 2, we see that

Cτ∗ = sup
d≥2

Cτ∗,d = max{c1,c3}1/τ∗ .
= 1.67089,

as needed to prove the theorem. ut
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Remark 7. Note that the exponent of quasi-polynomial tractability is 2/ ln 2, inde-
pendent of the values of r and s. ut

4.3 Product Weights

In this section, we look at product weights Γ (Π), which are defined by (2), subject to
the condition (3) on the weightlets. As was the case for the space studied in [11, 12],

we find that H0,1
Γ (Π)

(Td) =
[
H0,1

Γ (Π)
(T)
]⊗d

has a tensor product structure for product
weights, with

αd,k,Γ =
d

∏
j=1

γd, j

γd, j + k2
j

∀k ∈ Zd .

In what follows, we shall assume that the weightlets γd, j are uniformly bounded,
i.e., that there exists M > 0 such that

γd, j ≤M ∀ j ∈ [d],d ∈ N. (41)

Remark 8. What happens if (41) does not hold? If we allow weightlets that are not
uniformly bounded, then AppΓ ,r,s can suffer from the curse of dimensionality. One
such instance is given by choosing γd, j ≡ d for all j ∈ [d] and d ∈ N. For a given
d ∈ N, let

εd =
1

2
√
(s− r)!(1+d)s−r(1+d−1)d

∼ 1
2
√
(s− r)!ε ds−r

as d→ ∞.

Following the approach in [12, Section 5.2], we can show that λd,k,Γ ,r,s > ε2
d for any

k ∈ {0,1}d . Since |{0,1}d |= 2d , it follows that n(εd ,AppΓ ,r,s)≥ 2d . ut

4.3.1 Quasi-Poynomial Tractability

We claim that our approximation problem is always quasi-polynomially tractable
for bounded product weights. Indeed, let ΠM denote product weights for which
γd, j ≡M. Then AppΓ (Π),r,s is no harder than AppΓ (ΠM),r,s, since

αd,k,Γ (Π) ≤ αd,k,Γ (ΠM) =
d

∏
j=1

1
1+ k2

j/M
.

It is now easy to see that AppΓ (ΠM),r,s is quasi-polynomially tractable, whence
AppΓ (Π) is also quasi-polynomially tractable. The exponents of quasi-polynomial
tractability satisfy
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tqpoly(AppΓ (Π),r,s)≤ tqpoly(AppΓ (ΠM),r,s) =
2

ln(1+M−1)
.

Moreover, the bound in this inequality is sharp, being attained by choosing equal
weightlets Π = ΠM . To see why this is so, simply reiterate the proof of Theorem 5,
replacing k2

j by k2
j/M and 1

2 by 1+ 1/M and making sure to use the upper bound
ηd,k ≤ 1+d2/M.

4.3.2 Polynomial and Strong Polynomial Tractability

From Theorem 4, we see that since our weights are bounded, our approximation
problem AppΓ ,r,s is (strongly) polynomially tractable iff the same is true for the
approximation problem AppΓ ,0,0. We now look at (strong) polynomial tractability
in more detail:

Theorem 6. We have the following results for bounded product weights.

1. AppΓ ,r,s is strongly polynomially tractable iff there exists τ > 1
2 such that Aτ <∞,

where

Aτ = sup
d∈N

d

∑
j=1

γ
τ
d, j.

a. The exponent of strong polynomial tractability satisfies the inequality

p(AppΓ ,r,s) ∈
[

max
{

1,
1

s− r+1
p(AppΓ ,0,0)

}
, p(AppΓ ,0,0)

]
.

Hence when pqpoly(AppΓ ,0,0) = 1, we have

pqpoly(AppΓ ,r,s) = pqpoly(AppΓ ,0,0).

b. Let
p(AppΓ ,0,0) = 2τ

∗,

where
τ
∗ = inf{τ > 1

2 : Aτ < ∞} ≥ 1
2 .

Then for all τ > τ∗, we have

n(ε,Appd,Γ ,r,s)≤ n(ε,Appd,Γ ,0,0)≤ ε
−2τ exp

(
2ζ (2τ)π−2τ Aτ

)
,

where

ζ (s) =
∞

∑
j=1

1
js

denotes the Riemann zeta function.

2. AppΓ ,r,s is polynomially tractable iff there exists τ > 1
2 such that Bτ < ∞, where
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Bτ = limsup
d→∞

1
ln d

d

∑
j=1

γ
τ
d, j.

When this holds, then for any qτ > Bτ there exists a positive Cτ such that

n(ε,Sd)≤Cτ d qτ ε
−2τ ∀ε ∈ (0,1), d ∈ N.

3. For product weights independent of d, i.e., such that γd, j ≡ γ j for all d ∈N, strong
polynomial tractability and polynomial tractability for AppΓ ,r,s are equivalent.

Proof. Follow the proof of [12, Thm. 5.3]. Take account of the following changes:

1. The factor π2 in [12, Thm. 5.3] does not appear.
2. The expression (k j−1)2 in [12, Thm. 5.3] becomes k2

j .
3. Sums are over Zd or Z, rather than over Nd

0 or N0. ut

4.4 Bounded Finite-Order and Finite-Diameter Weights

As seen in Remark 3, if we allow unbounded weights, then we can run into situations
in which AppΓ ,r,s is strongly polynomially tractable, but AppΓ ,0,0 suffers from the
curse of dimensionality. So we’re only interested in bounded finite-order and finite-
diameter weights, so that there exists M > 0 such that

M := sup
d∈N

sup
u⊆[d]

γd,u < ∞.

Now Theorem 3 tells us that our problem Appd,Γ ,r,s is no harder than the prob-
lem Appd,Γ ,0,0. So we may follow the approach in the proof of [12, Theorem 5.4],
which relies on [11, Theorem 4.1], to see that for any τ > 0, there exist Cτ,ω > 0
such that

n(ε,AppΓ ,r,s)≤Cτ,ω Mτ/2dω
ε
−τ . (42)

Thus AppΓ ,r,s is always polynomially tractable for finite-order weights. Finally,
since finite-diameter weights are a special case of finite-order weights of order 1,
we may substitute ω = 1 in (42) to get a polynomially-tractable upper bound
for AppΓ ,r,s with finite-diameter weights.
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(2008). DOI 10.4171/026
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