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ABSTRACT. In a previous paper, the authors showed
that the information complexity of the Fredholm problem
of the second kind is essentially the same as that of the
approximation problems over the spaces of kernels and
right-hand sides. This allowed us to give necessary and
sufficient conditions for the Fredholm problem to exhibit a
particular level of tractability (for information complexity)
over weighted tensor product (wtp) spaces, as well as
over an important class of not necessarily tensor product
weighted Sobolev spaces. Furthermore, we addressed the
overall complexity of this Fredholm problem for the case
in which the kernels and right-hand sides belong to a wtp
space. For this case, we showed that a nearly-minimal-error
interpolatory algorithm is easily implementable, with cost
very close (to within a logarithmic factor) to the information
cost. As a result, tractability results, which had previously
only held for the information complexity, now hold for the
overall complexity–provided that our kernels and right-hand
sides belong to wtp spaces. This result does not hold for the
weighted Sobolev spaces mentioned above, since they are not
necessarily tensor product spaces.

In this paper, we close this gap. We exhibit an easily
implementable iterative approximation to a nearly minimal
error interpolatory algorithm for this family of weighted
Sobolev spaces. This algorithm exhibits the same good
properties as the algorithm presented in the previous paper.
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1. Introduction. Let I = [0, 1] be the unit interval, and let d ∈ N =
{1, 2, . . .} be a positive integer. For q ∈ L2(I

2d) and f ∈ L2(I
d), we

wish to approximate the solution u ∈ L2(I
d) of the Fredholm problem

of the second kind having kernel q and right-hand side f , i.e.,

(1) u(x)−
∫
Id

q(x,y)u(y) dy = f(x) almost everywhere x ∈ Id.

We rephrase this problem as an operator equation in the usual way.
For q ∈ L2(I

2d), we let Tq be the compact Fredholm operator on L2(I
d)

defined by

Tqv =

∫
Id

q(·,y)v(y) dy for all v ∈ L2(I
d),

so that we may rewrite (1) as

(2) (I − Tq)u = f.

Clearly,

∥Tqv∥L2(Id) ≤ ∥q∥L2(I2d)∥v∥L2(Id)

for all q ∈ L2(I
2d), v ∈ L2(I

d),

so that

(3) ∥Tq∥Lin[L2(Id)] ≤ ∥q∥L2(I2d) for all q ∈ L2(I
2d).

Moreover, if ∥q∥L2(I2d) < 1, then the operator I − Tq has a bounded
inverse, whose operator norm satisfies the inequality

(4) ∥(I − Tq)
−1∥Lin[L2(Id)] ≤

1

1− ∥q∥L2(I2d)

.

Hence, (2) has a unique solution u ∈ L2(I
d).

Now suppose that Fd and Q2d are subspaces of L2(I
d) and L2(I

2d),
respectively. Without essential loss of generality we may assume that

∥ · ∥L2(Id) ≤ ∥ · ∥Fd
and ∥ · ∥L2(I2d) ≤ ∥ · ∥Q2d

,

see [2, Remark 3.1]. Given M ∈ (0, 1), let

Qres
2d = {q ∈ Q2d : ∥q∥Q2d

≤ M } .
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Letting BFd denote the unit ball of Fd, the solution operator Sd : BFd

×Qres
2d → L2(I

d) given by

u = Sd(f, q) if and only if (I − Tq)u = f

for all (f, q) ∈ BFd ×Qres
2d

is well-defined.

We wish to approximate Sd at minimal cost. For (f, q) ∈ BFd ×Qres
2d ,

we approximate Sd(f, q) by an algorithm A using finitely many infor-
mation evaluations of f and q. Here, an information operation is the
evaluation of a continuous linear functional (of either the kernel or the
right-hand side).1

The error of such an algorithm A is given by

e(A,Sd) = sup
(f,q)∈BFd×Qres

2d

∥Sd(f, q)−A(f, q)∥L2(Id).

Then
e(n, Sd) = inf

An

e(An, Sd)

denotes the nth minimal error for solving the Fredholm problem. Here,
the infimum is over all algorithms An using at most n information
operations.

For ε ∈ (0, 1), the information complexity of our problem is given by

n(ε, Sd) = inf {n ∈ N : e(n, Sd) ≤ ε}.

Remark 1.1. The Fredholm problem (2) is a linear operator equation
since the solution u depends linearly on the right hand side f . However,
our viewpoint is that the solution u depends not only on f , but also
on the kernel q, with algorithms approximating u requiring information
about both f and q. Since u depends nonlinearly on q, we are looking at
a nonlinear problem, at least from the viewpoint of information-based
complexity.

In our previous paper [2], we examined this problem from the
viewpoint of tractability, i.e., the behavior of the problem’s ε-complexity
as a function of both the error threshold ε and the dimension d, where
d is large. We established the following results, which we express in
terms of F = {Fd}d∈N and Q = {Q2d}d∈N:
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(i) The Fredholm problem is no harder than the L2-approximation
problems for F and Q.2

(ii) The L2-approximation problem for F is no harder than the
Fredholm problem.

(iii) If Q satisfies a certain extension property, then the L2-approxima-
tion problem for Q is no harder than the Fredholm problem.

It then follows that, if the L2-approximation problems for F and Q
enjoy any specific kind of tractability (e.g., weak, polynomial, or strong
polynomial, see [2] or [1, subsection 4.4] for details), then so does the
Fredholm problem. Moreover, suppose that Q satisfies the extension
property; if the L2-approximation problem for either Q or F does not
enjoy a particular kind of tractability, then neither does the Fredholm
problem.

We then used these results, along with results (some known, some
new) about the L2-approximation problem for certain well-studied
spaces: spaces of C∞ functions, (unweighted) tensor product spaces,
weighted tensor product (wtp) spaces and a class of not necessarily
tensor product weighted Sobolev spaces. We found necessary and
sufficient conditions for the Fredholm problem to have various kinds
of tractability over these spaces, at least at the level of information
complexity. Once again, see our paper [2] for the details.

But information complexity does not tell us the whole story, since it
counts only the number of information functionals evaluated, ignoring
the combinatory cost (e.g., arithmetic and boolean operations) of the
algorithm that computes the approximate solution. We really want to
determine the (overall) complexity of our problem, given by

comp(ε, Sd) = inf {cost(A) : algorithms A such that e(A,Sd) ≤ ε}.

Here, cost(A) denotes the cost of an algorithm A, including both the
information and the combinatory costs.

This point was addressed in the last part of [2]. Under the condition
that F and Q were sequences of wtp spaces, we showed that an
iterative approximation to the interpolatory algorithm delivers an ε-
approximation at nearly-minimal cost. By “nearly minimal,” we mean
that its cost is at most a factor of ln(1/ε) more than the optimal cost.

The last result does not hold for the weighted Sobolev spaces
mentioned previously since they are not necessarily wtp spaces. So,
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although we have conditions that are necessary and sufficient for various
kinds of tractability when using such spaces, these tractability results
only apply at the information level. The question of whether the same
is true for overall complexity (i.e., counting combinatory cost, as well
as information cost) was not settled by [2].

In this paper, we close this gap. Let Fd and Q2d be the weighted
Sobolev spaces mentioned above. From [2], we know that an interpola-
tory algorithm has nearly-minimal error. Our main result is to exhibit
an iterative approximation of this algorithm, whose error is nearly min-
imal and whose cost is about the same, modulo a logarithmic factor.
It then follows that all the statements about the tractability (at the
information level) of the Fredholm problem for this family of weighted
Sobolev spaces also hold when combinatory cost is included.

In general, these Sobolev spaces are not tensor product spaces. That
is because the eigenvalues of the associated operator defined by (6) in
Section 2 are not generally of product form. Hence, the results of [2]
do not directly apply here. However, the eigenvectors of this operator
do have product form. This allows us to prove that the corresponding
matrix of linear equations is sparse and the cost of one step of an
iterative algorithm is linear, modulo a logarithmic factor, in the size of
this matrix.

2. A family of weighted Sobolev spaces. We now define the
family of weighted Sobolev spaces studied in this paper. These spaces
are weighted subspaces of [H1(I)]⊗d, the d-fold tensor product of
H1(I).

Let
γ = {γd,u : u ⊆ [d], d ∈ N}

be a set of non-negative weights, where [d] = {1, 2, . . . , d}. For
simplicity, we shall choose γd,∅ = 1 and assume that all the weights
are in the interval [0, 1]. Let

Hd,γ =

{
v ∈ [H1(I)]⊗d : for all u ⊆ [d] γd,u = 0 =⇒ ∂|u|

∂xu
v ≡ 0

}
,

which is a Hilbert space under the inner product

⟨v, w⟩Hd,γ
=

∫
Id

v(x)w(x) dx
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+
∑
u⊆[d]
u ̸=∅

γd,u>0

γd,u
−1

∫
Id

∂|u|

∂xu
v(x)

∂|u|

∂xu
w(x) dx

for all v, w ∈ Hd,γ .

Interpreting 0/0 as 0, we may rewrite this inner product in the simpler
form

(5)

⟨v, w⟩Hd,γ
=

∑
u⊆[d]

γd,u
−1

∫
Id

∂|u|

∂xu
v(x)

∂|u|

∂xu
w(x) dx,

for all v, w ∈ Hd,γ .

Note that, if γd,u = 0 for all nonempty u, then Hd,γ = span{1}. To
omit this trivial case, we assume that γd,u ̸= 0 for at least one nonempty
u. Then it is easy to see that dim(Hd,γ) = ∞.

It is natural to ask how the linear spaces Hd,γ and [H1(I)]⊗d are
related. Obviously, we always have Hd,γ ⊆ [H1(I)]⊗d. If γd,u = 0
for some nonempty u, then Hd,γ is a proper subspace of [H1(I)]⊗d.
Otherwise, if all the γd,u are positive, then Hd,γ = [H1(I)]⊗d; however,
their inner products and norms are different unless all γd,u = 1.

The space [H1(I)]⊗d is a tensor-product space. How about the
space Hd,γ? The answer depends on the weights γ. Indeed, it is easy
to see that Hd,γ is a tensor product space for the so-called positive
product weights, i.e., for γd,u =

∏
j∈u γd,j with γd,j ∈ (0, 1]. Then

Hd,γ =
⊗d

j=1 H1,γd,j
(I), where H1,γd,j

is algebraically the same as

H1(I), but with inner product

⟨u,w⟩H1,γd,j
(I) =

∫ 1

0

v(x)w(x) dx+ γ−1
d,j

∫ 1

0

v′(x)w′(x) dx

for all v, w ∈ H1(I).

To see that Hd,γ is not always a tensor-product space, consider the
following example. Choose γd,u ̸= 0 for all |u| = 1 and γd,u = 0 for all
|u| ≥ 2. Then Hd,γ is the direct sum of univariate functions and, for
f ∈ Hd,γ , we have

f(x) = f1(x1) + f2(x2) + · · ·+ fd(xd) with fj ∈ H1(I),
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and

∥f∥2Hd,γ
= ∥f∥2L2(Id) +

d∑
j=1

γ−1
d,{j}∥f

′
j∥2L2(I)

.

In particular, f(x) =
∏d

j=1 fj(xj) does not belong to Hd,γ for non-

constant fj ∈ H1(I), which shows that Hd,γ is not a tensor product
space in this case.

We will need to know the eigenvalues and eigenfunctions of the
operator

(6) Wd,γ = Ed,γ
∗Ed,γ : Hd,γ −→ Hd,γ ,

where Ed,γ : Hd,γ → L2(I
d) is the canonical embedding

Ed,γv = v, for all v ∈ Hd,γ .

This corresponds to the L2-approximation problem for Hd,γ and its
nth minimal error is given by

(7) e(n,Ed,γ) =
√
αd,γ,n+1,

where
αd,γ,1 ≥ αd,γ,2 ≥ αd,γ,3 · · · > 0

are the eigenvalues of Wd,γ . Moreover, the corresponding nth minimal-
error algorithm is given by the projection

(8) Pd,γ,nw =

n∑
j=1

⟨w, ed,γ,j⟩Hd,γ

∥ed,γ,j∥2Hd,γ

ed,γ,j for all w ∈ Hd,γ ,

where ed,γ,j is the eigenfunction of Wd,γ corresponding to αd,γ,j . The
set of eigenfunctions {ed,γ,j}j∈N is an orthogonal basis for Hd,γ .

So let us determine these eigenvalues and eigenfunctions of Wd,γ .
For d ∈ N and any multi-index k = [k1, k2, . . . , kd] ∈ Nd, let

(9) ek =
d⊗

i=1

eki , i.e., ek(x) =
d∏

i=1

eki(xi) for all x ∈ Id,

where
ek(x) = cosπ(k − 1)x, for all x ∈ I, k ∈ N.
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Note that

∥ek∥2L2(Id) = 2−|{j∈[d]:kj>1}| , for all k ∈ Nd.

We now check when ek belongs to Hd,γ . It clearly holds if all the γd,u
are positive. On the other hand, if γd,u = 0 for some u, then we need

to guarantee that ∂|u|/∂xu ek ≡ 0. This holds if and only if there is an
index j ∈ u for which kj = 0. Hence, ek ∈ Hd,γ if and only if k ∈ Jd,γ ,
where

Jd,γ =
{
k ∈ Nd : ∀ u ⊆ [d], γd,u = 0 =⇒ ∃ j ∈ u such that kj = 1

}
.

We stress that Jd,γ is an infinite set since γd,u ̸= 0 for at least one
nonempty u. Clearly, Jd,γ = Nd if all γd,u are positive.

We find that:

Wd,γek = αd,γ,kek for all k ∈ Jd,γ ,

where

αd,γ,k =

( ∑
u⊆[d]

γd,u
−1

∏
j∈u

(
π2(kj − 1)2

))−1

for all k ∈ Jd,γ .

Then {ek}k∈Jd,γ
is an orthogonal basis for Hd,γ , with

∥ek∥2Hd,γ
=

∥ek∥2L2(Id)

αd,γ,k
for all k ∈ Jd,γ .

We stress that the eigenfunctions ek are of product form and do
not depend on the weights γ. It turns out that this property will be
useful later. On the other hand, the eigenvalues αd,γ,k do depend on
the weights γ and they are not necessarily of product form.

Now let {k[d,γ, j]}j∈N be a reordering of Jd,γ such that the jth-
largest eigenvalue of Wd,γ is given by

αd,γ,j = αk[d,γ,j].

We then denote

ed,γ,j = ek[d,γ,j], for all j ∈ N,

thereby completing the specification of the nth minimal-error algorithm
(8) for Hd,γ .
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In what follows, we let Fd = Hd,γF
and Q2d = H2d,γQ

. Here, the
weights

γF = {γd,u,F : u ⊆ [d], d ∈ N}

and

γQ = {γ2d,u,Q : u ⊆ [2d], d ∈ N}

are, in general, not related. However, as before, we assume that
γd,∅,F = γ2d,∅,Q = 1, γd,u,F , γ2d,u,Q ∈ [0, 1], and at least one γd,u,F
and γ2d,u,Q are nonzero for a nonempty u.

3. An interpolatory algorithm for the Fredholm problem.
The basic interpolatory algorithm for the Fredholm problem over the
Sobolev spaces described above is the same as the interpolatory algo-
rithm described in [2, Section 6]. For the sake of exposition, we repeat
that description in this paper.

Let n(F ) and n(Q) be two positive integers. The information about
any right-hand side f ∈ Fd will be given by the first n(F ) inner products
with respect to {ed,γF ,j}j∈N, and the information about any kernel
function q ∈ Q2d will be given by the first n(Q) inner products with
respect to {e2d,γQ,j}j∈N. Knowing this information, we can compute

f̃ = Pd,γF ,n(F )f and q̃ = P2d,γQ,n(Q)q,

where the P·,·,· refers to the projection operator defined in (8). Observe

that (f̃ , q̃) ∈ BFd ×Qres
2d . Furthermore, we see that (f̃ , q̃) interpolate

the data, i.e., the first n(F ) inner products of f and f̃ are the same, as
well as the first n(Q) inner products of q and q̃.

The interpolatory algorithm is defined as the exact solution of the

Fredholm problem for (f̃ , q̃), i.e.,

Aint
n(F ),n(Q)(f, q) = Sd(f̃ , q̃) for all (f, q) ∈ BFd ×Qres

2d .

Let us choose n(F ) and n(Q) as

n(F ) = n
(
1
2 (1−M) ε,Ed,γF

)
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and

n(Q) = n

(
(1−M)2

2M
ε,E2d,γQ

)
,

so that

e(n(F ), Ed,γF
) ≤ 1

2 (1−M) ε

and

e(n(Q), E2d,γQ
) ≤ (1−M)2

2M
ε.

We know from [2, Section 6] that

e(Aint
n(F ),n(Q), Sd) ≤ ε,

so we can compute the ε-approximation delivered by Aint
n(F ),n(Q) using

n(F ) + n(Q) information evaluations.

We now look at the implementation of this interpolatory algorithm.
The details are similar to those in [2], but with some important
differences.

First, note the following crucial (but trivial) observation: For a given
j ∈ {1, 2, . . . , nQ}, let us represent k[2d,γQ, j] ∈ N2d as

k[2d,γQ, j] =
(
k[1; d,γQ, j],k[2; d,γQ, j]

)
,

so that k[1; d,γQ, j] ∈ Nd and k[2; d,γQ, j] ∈ Nd, respectively, denote
the first and the last d components of k[2d,γQ, j]. Using (9), we then
see that

e2d,γQ,j = ek[2d,γQ,j] = ek[1;d,γQ,j] ⊗ ek[2;d,γQ,j].

For (f, q) ∈ BFd ×Qres
2d , and ũ = Aint

n(F ),n(Q)(f, q), let

ζj =
⟨q, e2d,γQ,j⟩H2d,γQ

∥e2d,γQ,j∥2H2d,γQ

for j ∈ {1, 2, . . . , n(Q)}

and

θi =
⟨f, ed,γF ,i⟩Hd,γF

∥ed,γF ,i∥2Hd,γF

for i ∈ {1, 2, . . . , n(F )}.
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Since Aint
n(F ),n(Q) is interpolatory, we have

(10)

ũ =

∫
Id

q̃(·,y)ũ(y) dy + f̃

=

n(Q)∑
j=1

ζj⟨ek[2;d,γQ,j], ũ⟩L2(Id)ek[1;d,γQ,j] +

n(F )∑
i=1

θiek[d,γF ,i].

This shows that

ũ ∈ En(F ),n(Q)

= span
{
ek[d,γF ,1], . . . , ek[d,γF ,n(F )], ek[1;d,γQ,1], . . . , ek[1;d,γQ,n(Q)]

}
.

Now the functions ek[d,γF ,i] are L2(I
d)-orthogonal for i ∈ {1, 2, . . . ,

n(F )}, as are the functions ek[1;d,γQ,j] for j ∈ {1, 2, . . . , n(Q)}. They

are also mutually L2(I
d)-orthogonal if k[d,γf , i] ̸= k[1; d,γQ, j], i.e.,

⟨ek[d,γF ,i], ek[1;d,γQ,j]⟩L2(Id) = 0.

Therefore,

m := dimEn(F ),n(Q) ∈ [max(n(F ), n(Q)), n(F ) + n(Q)].

The dimension m = n(F ) + p, where p is the number of indices
k[1; d,γQ, j] that are not present in k[d,γF , i] for all i = 1, 2, . . . , n(F ).
Clearly, p ∈ [0, n(Q)]. We remove all redundant ek[1;d,γQ,j] that belong

to span{ek[d,γF ,1], . . . , ek[d,γF ,n(F )]}, calling the remaining elements
ek[1;d,γQ,l1], . . . , ek[1;d,γQ,m−n(F )]. Let

zj =

{
ek[d,γF ,j] for j ∈ {1, 2, . . . , n(F )},
ek[1;d,γQ,lj−n(F )] for j ∈ {n(F ) + 1, n(F ) + 2, . . . ,m}.

Then {z1, z2, . . . , zm} is an orthogonal basis for En(F ),n(Q). Since
ũ ∈ En(F ),n(Q), there exist υ1, υ2, . . . , υm ∈ R such that

ũ =
m∑

k=1

υkzk.
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Using this expansion in (10), we see that

(11) ũ =
m∑

k=1

υk

n(Q)∑
j=1

ζj⟨ek[2;d,γQ,j], zk⟩L2(Id)ek[1;d,γQ,j]+

n(F )∑
j=1

θjek[d,γF ,j].

Fix i ∈ {1 . . . ,m}. Using the L2(I
d)-orthogonality of z1, z2, . . . , zm, it

follows that

υi =
⟨ũ, zi⟩L2(Id)

∥zi∥2L2(Id)

=
m∑

k=1

υk

n(Q)∑
j=1

ζj⟨ek[2;d,γQ,j], zk⟩L2(Id)⟨ek[1;d,γQ,j], zi⟩L2(Id)

∥zi∥2L2(Id)

+

n(F )∑
j=1

θj⟨ek[d,γF ,j], zi⟩L2(Id)

∥zi∥2L2(Id)

.

Note that the second sum is θi when i ∈ {1, . . . , n(F )} and zero for
i ∈ {n(F ) + 1, . . . ,m}. Letting

u = [υ1, υ2, . . . , υm]T,

we can write (11) as a system

(12) (I−K)u = b

of linear equations, where I denotes the m × m identity matrix; the
m×m matrix K = [κi,k]1≤i,k≤m is given by

κi,k =

n(Q)∑
j=1

ζj⟨ek[2;d,γQ,j], zk⟩L2(Id)⟨ek[1;d,γQ,j], zi⟩L2(Id)

∥zi∥2L2(Id)

for i, k ∈ {1, 2, . . . ,m},

and
b = [θ1, θ2, . . . , θn(F ), 0, 0, . . . , 0︸ ︷︷ ︸

m − n(F ) times

].

Corresponding to [2, Lemma 6.1], we have
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Lemma 3.1. Define

I =
{
k[2d,γQ, j] =

(
k[1; d,γQ, j],k[2; d,γQ, j]

)
:

j ∈ {1, 2, . . . , n(Q)}} .

(i) For any i, k ∈ {1, 2, . . . ,m}, we have

κi,k =


ζj2

−|{l∈[d]:kl[2;d,γQ,j]>1}| if (i, k)=
(
k[1;d,γQ, j],k[2;d,γQ, j]

)
for some j ∈ {1, 2, . . . , n(Q)},

0 if (i, j) /∈ I ,

and so the matrix K has at most n(Q) non-zero elements.
(ii) ∥K∥Lin[ℓ2(Rm)] ≤ M < 1.
(iii) The matrix I−K is invertible, with

∥(I−K)−1∥Lin[ℓ2(Rm)] ≤
1

1−M
.

Proof. For part (i), note that κi,k is nonzero if and only if there
exists j ∈ {1, 2, . . . , n(Q)} such that

zi = ek[1;d,γQ,j] and zk = ek[2;d,γ(Q),j],

i.e., when (i, k) ∈ I . When this holds, we have

κi,k = ζj∥zk∥2L2(Id) = ζj∥ek[2;d,γQ,j]∥2L2(Id) = ζj2
−|{ l∈[d]:kl[2;d,γQ,j]>1 }|.

Obviously, κi,k = 0 when (i, j) /∈ I . Hence, there are at most
|I | = n(Q) nonzero coefficients in the matrix K. This establishes
part (i).

To see that part (ii) holds, we estimate ∥K∥2
Lin[ℓ2(Rn(F ))]

by the square

of the Frobenius norm
∑n(Q)

i,k=1 κ
2
i,k and then apply part (i). We have

∥K∥2Lin[ℓ2(Rn(F ))] ≤
n(Q)∑
i,k=1

κ2
i,k ≤

n(Q)∑
j=1

ζ2j ∥ek[2;d,γQ,j]∥2L2(Id)

≤
n(Q)∑
j=1

ζ2j ≤
n(Q)∑
j=1

⟨q, e2d,γQ,j⟩H2d,γQ

∥e2d,γQ,j}2H2d,γQ

= ∥P2d,γQ,n(Q)q∥2H2d,γQ
≤ ∥q∥2H2d,γQ

≤ M2 ≤ 1,

as required. Part (iii) follows immediately from part (ii). �
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As in [2], we have reduced the implementation of Aint
n(F ),n(Q) to

solving the sparse linear system (I−K)u = b. We again approximate
the solution u via the simple fixed-point iteration

(13)
u(ℓ+1) = Ku(ℓ) + b (0 ≤ ℓ < r),

u(0) = 0.

Letting

u(r) = [υ
(r)
1 , υ

(r)
2 , . . . , υ(r)

m ]T,

we shall write

u
(r)
n(F ),n(Q) =

m∑
k=1

υ
(r)
k zk

for our r-step fixed-point approximation to the exact solution

ũ = Aint
n(F ),n(Q)(f, q) =

m∑
k=1

υkzk.

Let us write
u
(r)
n(F ),n(Q) = Aint-mod,r

n(F ),n(Q)(f, q),

calling Aint-mod,r
n(F ),n(Q) the modified interpolatory algorithm.

We now analyze the cost of computing ũ = Aint
n(F ),n(Q)(f, q). We

shall make the usual assumption, commonly made in information-based
complexity theory, that arithmetic operations have unit cost and that
one information operation of f and q have a fixed cost cd ≥ 1. Now let

cost(ε,Aint
ε,d) = inf

{
cost(Aint

n(F ),n(Q)) : e
(
Aint

n(F ),n(Q),, Sd

)
≤ ε

}
and

cost(ε,Aint-mod,r
ε,d ) = inf

{
cost(Aint-mod,r

n(F ),n(Q)) : e
(
Aint

n(F ),n(Q),r, Sd,
)
≤ ε

}
,

respectively, denote the minimal cost of using the interpolatory and
modified interpolatory algorithms to find an ε-approximation of the
Fredholm problem. That is, we minimize the cost by choosing proper
parameters n(F ), n(Q) and r of the modified interpolatory algorithm,
and the parameters n(F ) and n(Q) of the interpolatory algorithm.

As in [2], we have
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Proposition 3.2. For any ε ∈ (0, 1) and d ∈ N, let r in (13) be given
by

r =

⌈
ln
(
2/(1−M)

)
+ ln(1/ε)

ln(1/M)

⌉
= Θ

(
ln

1

ε

)
.

Choose n(F ) and n(Q) so that

e(Aint
n(F ),n(Q)) ≤ 1

2ε.

Then, using r iterations of the fixed-point algorithm (13), we find that

cost(ε,Aint-mod,r
ε,d ) = cd ·Θ

(
n
(
1
2ε,A

int
ε,d

)
ln

(
1

ε

))
,

where the Θ-factor is independent of d and ε. Hence, if

(14) n
(
1
2ε,A

int
ε,d

)
= O

(
n(ε,Aint

ε,d)
)

with O-factor independent of d and ε, then

cost(ε,Aint-mod,r
ε,d ) = cd ·Θ

(
n
(
ε,Aint

ε,d

)
ln

(
1

ε

))
.

Hence, when (14) holds, the modified interpolatory algorithm is
within a logarithmic factor of being optimal. Such is the case when the
Fredholm problem (equivalently, the L2-approximation problems for F
and Q) is strongly polynomially tractable or polynomially tractable.
Obviously, the extra factor ln(1/ε) does not change the exponents of
strong polynomial or polynomial tractability.

ENDNOTES

1. In this paper, we are only concerned with such continuous linear
information, rather than standard information (consisting of the values
of the kernel or right-hand side at points in their domains).

2. By the L2-approximation for F (or for Q) we mean approximation
of f ∈ Fd (or q ∈ Q2d) in the L2-norm for all d.
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