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Background

•Belief propagation (BP) performs remarkably well for approximate marginal
inference and estimating the partition function

•May be viewed as an algorithm to try to minimize the Bethe free energy
F(q) = Eq(E )− SB(q) over q ∈ L, the local polytope

•But may converge only to a local optimum, or not at all

•Convergent methods have been developed such as CCCP or Frank-Wolfe

•But these yield a local optimum, with no time guarantee

Contribution

Highlights

•We derive the first method guaranteed to return the global optimum to within
arbitrary ε accuracy for any binary pairwise undirected model (MRF)

•Now allows the accuracy of the Bethe approximation to be tested rigorously

•Useful in practice for small problems

•Yields a FPTAS (fully polynomial-time approximation scheme) for attractive
models with any topology

More details

•We consider the global optimum Bethe partition function for binary pairwise
MRFs, − log ZB = minq∈LEq(E )− SB(q) = minq∈LF
•Discretize the space, for any ε construct a provably sufficient mesh s.t. optimum

discretized point q∗ has F(q∗) within ε of the true optimum − log ZB

•This approach was also used in earlier work (Weller and Jebara, 2013)

•Here we improve the method dramatically with gradMesh approach, based on
bounding first derivatives of F
•Applies to general models (attractive or not) to reduce the problem of

approximating log ZB to within ε to a discrete optimization problem, which may
be viewed as multi-label MAP inference

•N =
∑

i∈V Ni , sum of the number of points in each dimension, = O(nmWε )

• If the original model is attractive then the discrete problem is submodular (Korc̆
et al., 2012; Weller and Jebara, 2013) and may be solved efficiently via graph
cuts in time O(N3) (Schlesinger and Flach, 2006) to yield a FPTAS

Bethe pseudo-marginals in the local polytope

Given singleton pseudo-marginals qi = p(Xi = 1), qj = p(Xj = 1), local polytope
constraints imply pairwise pseudo-marginal

µij =

(
p(Xi = 0,Xj = 0) p(Xi = 0,Xj = 1)
p(Xi = 1,Xj = 0) p(Xi = 1,Xj = 1)

)
=

(
1 + ξij − qi − qj qj − ξij

qi − ξij ξij

)
with ξij ∈ [0,min(qi , qj)]. Welling and Teh (2001) showed:

•Minimizing F , can solve explicitly for ξij(qi , qj,Wij) as the solution of a quadratic
•Here Wij is the associativity of the edge, |Wij| ≤ W , n = |V|,m = |E|.

p(x) =
e−E (x)

Z
, E = −

∑
i∈V

θixi −
∑

(i ,j)∈E

Wij

2
[xixj + (1− xi)(1− xj)], xi ∈ {0, 1}

•Hence, sufficient to search over (q1, . . . , qn) ∈ [0, 1]n

Bethe free energy landscape (stylized)

Red dot shows the global optimum, we might return the green dot

Overall algorithm for ε-approximate global optimum log ZB

Input: ε, model parameters
Output: estimate of global optimum log ZB guaranteed to be in
range [log ZB − ε, log ZB], with corresponding pseudo-marginal

(1) Preprocess with MK to compute bounds [Ai , 1− Bi] on the
locations of minima

(2) Construct a sufficient mesh

(3) Attempt to solve the resulting multi-label MAP inference problem

(4) If unsuccessful, but a strongly persistent partial solution was
obtained, generate improved location bounds and repeat from (2)

At anytime, one may stop and compute bounds on log ZB

gradMesh ∂F
∂qi

= −θi + log (1−qi)di−1

q
di−1
i

∏
j∈N (i)(qi−ξij)∏

j∈N (i)(1+ξij−qi−qj)
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Comparison of methods
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Variation in N = sum of number of mesh points in each dimension, log scale, as: (top) n =
number of variables is changed, keeping W = 5 fixed; (bottom) W = maximum coupling
strength is changed, keeping n = 10 fixed. On the left, ε = 1 (medium resolution); on the right,
ε = 0.1 (fine resolution). In each case, the topology is a complete graph, edge weights are chosen
Wij ∼ U [−W ,W ] and θi ∼ U [−2, 2]. Average over 10 random models for each value.

curvMeshOrig is the original method of Weller and Jebara (2013) which has topological

restrictions; curvMeshNew is our refinement; gradMesh is our new first derivative method.

Discussion

•Models exist where BP fails to converge yet the Bethe approximation via our
mesh method works well

•Our approach may be used as a subroutine in a dual decomposition approach to
optimize over a tighter relaxation of the marginal polytope (Weller et al., 2014)

•And may also be used to bound location of Bethe optimum pseudo-marginals (no
runtime guarantee)

Acknowledgments

This work was supported in part by NSF grants IIS-1117631 and CCF-1302269

References

F. Korc̆, V. Kolmogorov, and C. Lampert. Approximating marginals using discrete energy minimization. Technical

report, IST Austria, 2012.

D. Schlesinger and B. Flach. Transforming an arbitrary minsum problem into a binary one. Technical report, Dresden

University of Technology, 2006.

A. Weller and T. Jebara. Bethe bounds and approximating the global optimum. In Artificial Intelligence and Statistics,

2013.

A. Weller, K. Tang, D. Sontag, and T. Jebara. Understanding the Bethe approximation: When and how can it go

wrong? In Uncertainty in Artificial Intelligence (UAI), 2014.

M. Welling and Y. Teh. Belief optimization for binary networks: A stable alternative to loopy belief propagation. In

Uncertainty in Artificial Intelligence (UAI), 2001.


