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e Belief propagation (BP) performs remarkably well for approximate marginal
inference and estimating the partition function

e May be viewed as an algorithm to try to minimize the Bethe free energy
F(q) =E.(E) — Sg(q) over g € L, the local polytope
e But may converge only to a local optimum, or not at all

e Convergent methods have been developed such as CCCP or Frank-Wolfe
e But these yield a local optimum, with no time guarantee

Contribution

Highlights

e \We derive the first method guaranteed to return the global optimum to within
arbitrary € accuracy for any binary pairwise undirected model (MRF)

e Now allows the accuracy of the Bethe approximation to be tested rigorously

e Useful in practice for small problems

e Yields a FPTAS (fully polynomial-time approximation scheme) for attractive
models with any topology

More details

e \We consider the global optimum Bethe partition function for binary pairwise
MRFs, —log Zg = minger, EG(E) — Sg(q) = minger, F

e Discretize the space, for any € construct a provably sufficient mesh s.t. optimum
discretized point g* has F(g*) within € of the true optimum — log Zg

e This approach was also used in earlier work (Weller and Jebara, 2013)

e Here we improve the method dramatically with gradMesh approach, based on
bounding first derivatives of F

e Applies to general models (attractive or not) to reduce the problem of
approximating log Zg to within € to a discrete optimization problem, which may
be viewed as multi-label MAP inference

an)

€
e If the original model is attractive then the discrete problem is submodular (Korc

et al., 2012; Weller and Jebara, 2013) and may be solved efficiently via graph
cuts in time O(N?) (Schlesinger and Flach, 2006) to yield a FPTAS

o N =) ., Ni sum of the number of points in each dimension, = O(

Bethe pseudo-marginals in the local polytope

Given singleton pseudo-marginals g; = p(X; = 1), q; = p(X; = 1), local polytope
constraints imply pairwise pseudo-marginal

. (p(X,- =0,X;=0) p(X; =0, X; = 1)) - (1 + & — qi — qj qj — &y)
with &; € [0, min(g;, g;)]. Welling and Teh (2001) showed:

e Minimizing F, can solve explicitly for £;(qi, q;, Wj;) as the solution of a quadratic
e Here W is the associativity of the edge, |W;| < W,n=|V|, m=|£|.

e_E(X) VV,
plx) =—5— E=- D Oxi— » S bxixi + (1= x)(1 = x)], x € {0,1}
TS (ij)e€
e Hence, sufficient to search over (qy,...,q,) € [0, 1]"
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Bethe free energy landscape (stylized) Comparison of methods
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Red dot shows the global optimum, we might return the green dot =~ = [ cuvMeshorigl | T [ curvMeshOrig
Example showing Bethe Free Energy over Two Variables -~ ~curvMeshNew - - -curvMeshNew
: ——gradMesh ——gradMesh
05 > 10! > 10!

Bethe free energy
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------- curvMeshOrig ~ curvMeshOrig
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Overall algorithm for e-approximate global optimum log /5 0 ﬁ’/S/ T 0 = 10
W W
Input: ¢, model parameters Variation in N = sum of number of mesh points in each dimension, log scale, as: (top) n =

number of variables is changed, keeping W =5 fixed; (bottom) W = maximum coupling
strength is changed, keeping n = 10 fixed. On the left, ¢ = 1 (medium resolution); on the right,
e = 0.1 (fine resolution). In each case, the topology is a complete graph, edge weights are chosen

Output: estimate of global optimum log Zg guaranteed to be in
range [log Zg — €, log Zg|, with corresponding pseudo-marginal

(1) Preprocess with MK to compute bounds [A;,1 — B;] on the W; ~ U[—-W, W] and 6, ~ U[—2,2]. Average over 10 random models for each value.
locations of minima curvMeshOrig is the original method of Weller and Jebara (2013) which has topological
(2) Construct a sufficient mesh restrictions; curvMeshNew is our refinement; gradMesh is our new first derivative method.

(3) Attempt to solve the resulting multi-label MAP inference problem

(4) If unsuccessful, but a strongly persistent partial solution was

obtained, generate improved location bounds and repeat from (2)

e Models exist where BP fails to converge yet the Bethe approximation via our

At anytime, one may stop and compute bounds on log Zg mesh method works well

e Our approach may be used as a subroutine in a dual decomposition approach to

1—q;)% [ Leney(ai—&p)
gradMesh o = Ui (qj,—.)lm optimize over a tighter relaxation of the marginal polytope (Weller et al., 2014)

e And may also be used to bound location of Bethe optimum pseudo-marginals (no

Upper and Lower Bounds for &£ .
P 7 runtime guarantee)
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