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Summary

We address the problem of marginal inference for undirected graphical models -
estimating the partition function Z and marginal probability distributions
We focus on binary pairwise (Ising) models, e.g. vision, RBMs, or social networks
Combining clamping of variables with approximate variational inference we obtain

• Strong theoretical results (middle column)

•Promising empirical results (right column)

Background: What is clamping?
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0 0 . . . 0 1 2.7

0 0 . . . 1 2 7.4

. . . . . . . . .

0 1 . . . 1 1.3 3.7 27.5

1 0 . . . 0 -1 0.4

1 0 . . . 1 0.2 1.2

. . . . . . . . .

1 1 . . . 1 1.8 6.0 19.6

Total Z = 47.1

Z can be split into two parts: clamp variable X1 to each
of {0, 1}, then add the two sub-partition functions:

Z = Z |X1=0 + Z |X1=1

After clamping a variable, remove it from the graph

• If remaining sub-models are acyclic then can find
sub-partition functions efficiently (Bethe approximation
is exact on trees)

• If not,

(a) Can repeat until acyclic, or
(b) Settle for approximate inference on sub-models

Will clamping and summing approximate
sub-partition functions always lead to a better
estimate of Z than approximate inference on the
original model?
Often but not always (see paper for example)

Variational inference

p(x) =
1

Z
exp(θ · x)

•Exact inference may be viewed as optimization,

log Z = max
µ∈M

[ θ · µ + S(µ) ] , S is true entropy

•Bethe makes 2 pairwise approximations,

log ZB = max
q∈L

[ θ · q + SB(q) ] , SB is Bethe entropy

•Bethe is exact on trees

•Observe that when Xi is clamped, we optimize over a subset

log ZB|Xi=0 = max
q∈L:qi=0

[ θ · q + SB(q) ] , qi = q(Xi = 1)

⇒ ZB|Xi=0 ≤ ZB, similarly ZB|Xi=1 ≤ ZB

•Notation: If we clamp variable Xi and sum approximate sub-partition functions,

Z
(i)
B := ZB|Xi=0 + ZB|Xi=1

≤ 2ZB by above

General models: upper bound on Z

Upper bound on Z
(i)
B leads to upper bound on Z

• Z
(i)
B := ZB|Xi=0 + ZB|Xi=1 ≤ 2ZB

•Repeat, clamping variables until remaining model is acyclic, where
Bethe is exact

•For example, if we must delete 2 variables Xi ,Xj , obtain

Z
(ij)
B :=

∑
a,b∈{0,1}

ZB|Xi=a,Xj=b ≤ 22ZB

But sub-partition functions are exact, hence LHS = Z
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Let ν(G ) be minimum size of a feedback vertex set (set of vertices
such that deleting them renders graph acyclic; ν ≥ treewidth−1)

Theorem (result is tight)

Z ≤ 2νZB

Attractive models: Master Theorem (strongest result)

An attractive model has all variables positively coupled

•For any variable Xi and x ∈ [0, 1], let qi = q(Xi = 1) and

log ZBi(x) = maxq∈L:qi=x [ θ · q + SB(q) ]

•ZBi(x) is ‘Bethe partition function constrained to singleton qi = x ’

•Define new function,

Ai(qi) := log ZBi(qi)− Si(qi)

•By considering derivatives of the Bethe free energy, and how the
optimum constrained to singleton qi varies with qi , we show

Theorem (strongest result for attractive models)

For an attractive binary pairwise model, Ai(qi) is convex

Attractive models: Consequences of Master Theorem

Lower bound on Z
(i)
B leads to lower bound on Z

Theorem (clamp and sum can only increase Bethe)

For an attractive binary pairwise model and any Xi , ZB ≤ Z
(i)
B

Then with similar proof to result above for general models,

Corollary (lower bound on Z , first proved by Ruozzi, 2012)

For an attractive binary pairwise model, ZB ≤ Z

⇒ clamping can only improve the estimate of the partition function

ZB ≤ Z
(i)
B ≤ Z

(ij)
B ≤ · · · ≤ Z

Experiments

We investigate error of Z
(i)
B = ZB|Xi=0 + ZB|Xi=1 compared to error of original ZB,

various methods of choosing variable to clamp Xi :

• best Clamp best improvement in error of Z in hindsight

•worst Clamp worst improvement in error of Z in hindsight

• avg Clamp average performance

•maxW max sum of incident edge weights
∑

j∈N(i) |Wij|
•Mpower more sophisticated, tries to break heavy cycles
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•Potentials drawn at random: unary θi ∼ U [−2, 2],
edge Wij ∼ U [−Wmax,Wmax] for general, Wij ∼ U [0,Wmax] for attractive models

Attractive random graph n = 10, p = 0.5
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General random graph n = 10, p = 0.5
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As n grows, still helpful even just to clamp one variable (see paper)

General ‘lamp’ graph
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