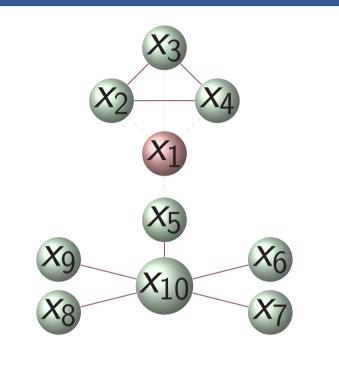


We address the problem of *marginal inference* for undirected graphical models estimating the partition function Z and marginal probability distributions We focus on *binary pairwise* (Ising) models, e.g. vision, RBMs, or social networks Combining *clamping* of variables with *approximate variational inference* we obtain

- Strong theoretical results (middle column)
- Promising empirical results (right column)

Background: What is clamping?



$x_1x_2\ldots x_{10}$	score	exp(score)	
000	1	2.7	
001	2	7.4	
011	1.3	3.7	27.5
100	-1	0.4	
101	0.2	1.2	
$1 \ 1 \ \dots 1$	1.8	6.0	19.6
Total $Z =$		47.1	

- Z can be split into two parts: clamp variable X_1 to each of $\{0,1\}$, then add the two sub-partition functions: $Z = Z|_{X_1=0} + Z|_{X_1=1}$
- After clamping a variable, remove it from the graph
- If remaining sub-models are acyclic then can find sub-partition functions efficiently (Bethe approximation is exact on trees)
- If not,
 - (a) Can repeat until acyclic, or
 - (b) Settle for approximate inference on sub-models Will clamping and summing approximate sub-partition functions always lead to a better estimate of Z than approximate inference on the original model?

Often but not always (see paper for example)

Variational inference

$$p(x) = \frac{1}{Z} \exp(\theta \cdot x)$$

• Exact inference may be viewed as *optimization*,

$$\log Z = \max_{\mu \in \mathbb{M}} \left[\ heta \cdot \mu + oldsymbol{S}(\mu) \
ight], \qquad S ext{ is true ent}$$

• Bethe makes 2 pairwise approximations,

$$egin{array}{l} {
m og} \ Z_B = \max_{q \in \mathbb{L}} \left[\ heta \cdot q + \mathcal{S}_B(q) \
ight], \quad \mathcal{S}_B \ {
m is} \ {
m Bethe} \ {
m er} \ {
m or} \ {
m of} \ {
m of}$$

- Bethe is exact on trees
- Observe that when X_i is clamped, we optimize over a subset

$$egin{aligned} & \mathrm{og}\, Z_B|_{X_i=0} = \max_{q\in\mathbb{L}:\,q_i=0} \left[\, heta\,\cdot\,q + S_B(q)\,
ight], \quad q_i = q(X_i) \ & \Rightarrow Z_B|_{X_i=0} \leq Z_B, \ \mathrm{similarly}\,\, Z_B|_{X_i=1} \leq Z_B. \end{aligned}$$

• **Notation:** If we *clamp* variable X_i and sum approximate sub-partition functions,

$$egin{aligned} Z_B^{(i)} &:= Z_B |_{X_i=0} + Z_B |_{X_i=1} \ &\leq 2Z_B & ext{by above} \end{aligned}$$

Clamping Variables and Approximate Inference Adrian Weller and Tony Jebara

tropy

ntropy

 $(X_i = 1)$

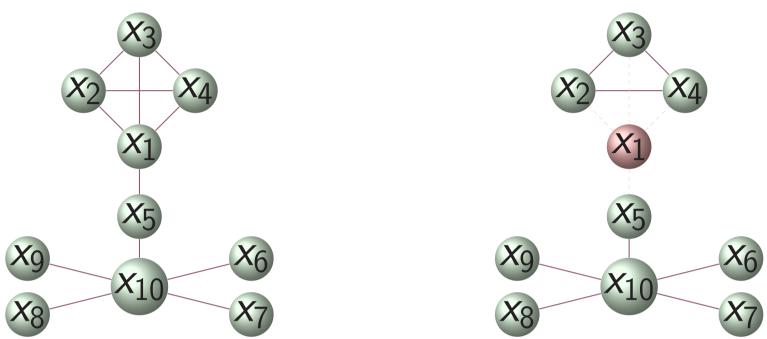
General models: upper bound on Z

Upper bound on $Z_R^{(i)}$ leads to upper bound on Z

- $Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1} \leq 2Z_B$ • Repeat, clamping variables until remaining model is acyclic, where Bethe is exact
- For example, if we must delete 2 variables X_i, X_j , obtain $r_{=b} < 2^2 Z_B$

$$Z_{ij}) := \sum_{a,b \in \{0,1\}} Z_B|_{X_i=a,X_j}$$

But sub-partition functions are *exact*, hence LHS = Z



Let $\nu(G)$ be minimum size of a feedback vertex set (set of vertices such that deleting them renders graph acyclic; $\nu \geq$ treewidth-1) **Theorem (result is tight)**

 $Z < 2^{\nu}Z_B$

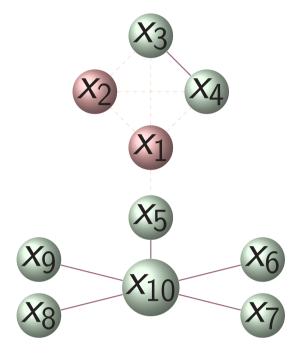
Attractive models: Master Theorem (strongest result)

- An *attractive* model has all variables positively coupled • For any variable X_i and $x \in [0, 1]$, let $q_i = q(X_i = 1)$ and $\log Z_{Bi}(x) = \max_{q \in \mathbb{L}: q_i = x} \left[\theta \cdot q + S_B(q) \right]$ • $Z_{Bi}(x)$ is 'Bethe partition function constrained to singleton $q_i = x'$
- Define new function,

 $A_i(q_i) := \log Z_{Bi}(q_i) - S_i(q_i)$ • By considering derivatives of the Bethe free energy, and how the optimum constrained to singleton q_i varies with q_i , we show Theorem (strongest result for attractive models) For an attractive binary pairwise model, $A_i(q_i)$ is convex

Attractive models: Consequences of Master Theorem

Lower bound on $Z_{R}^{(i)}$ leads to lower bound on Z Theorem (clamp and sum can only increase Bethe) For an attractive binary pairwise model and any X_i , $Z_B \leq Z_B^{(i)}$ Then with similar proof to result above for general models, Corollary (lower bound on Z, first proved by Ruozzi, 2012) For an attractive binary pairwise model, $Z_B \leq Z$ \Rightarrow clamping can only *improve* the estimate of the partition function

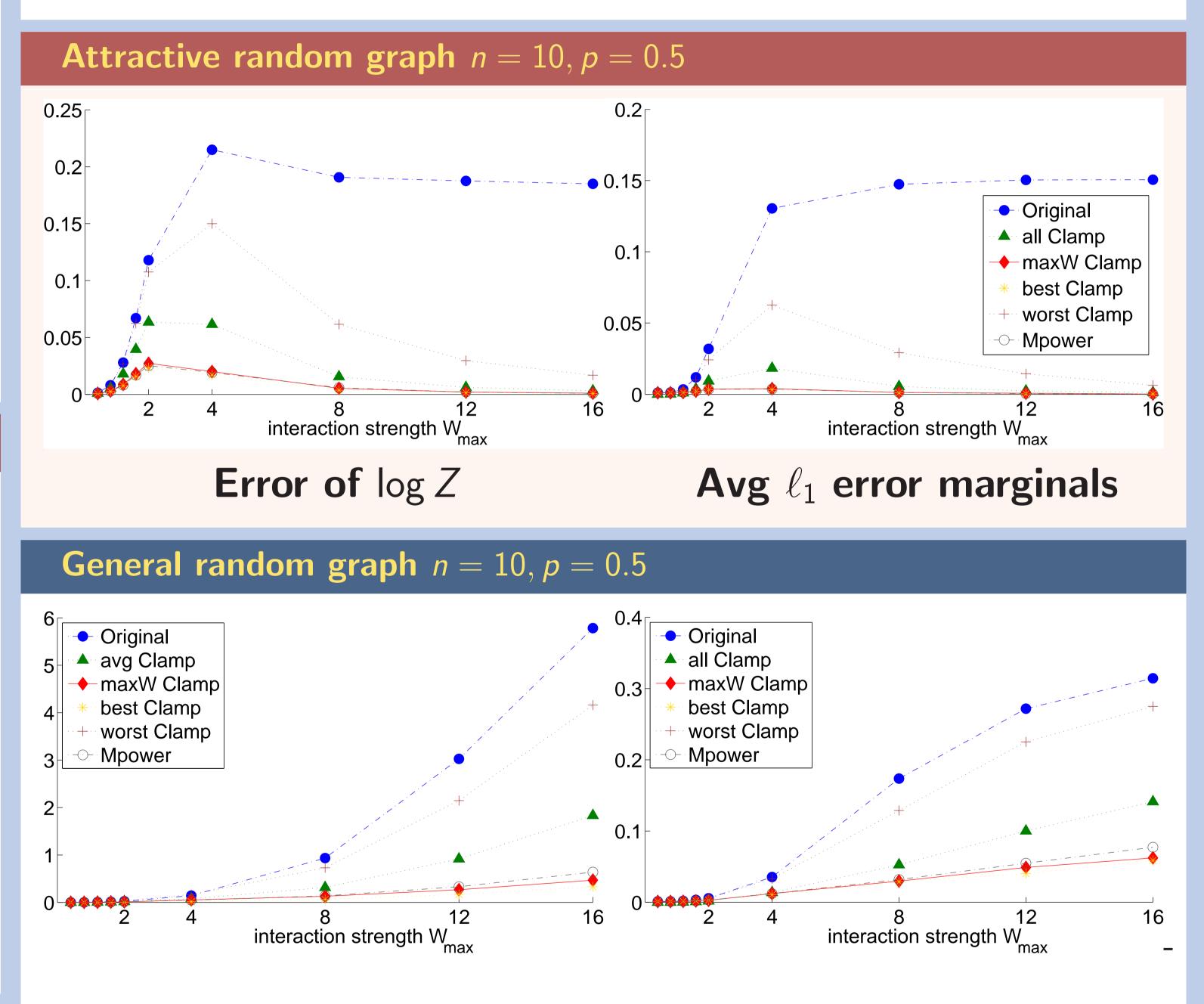


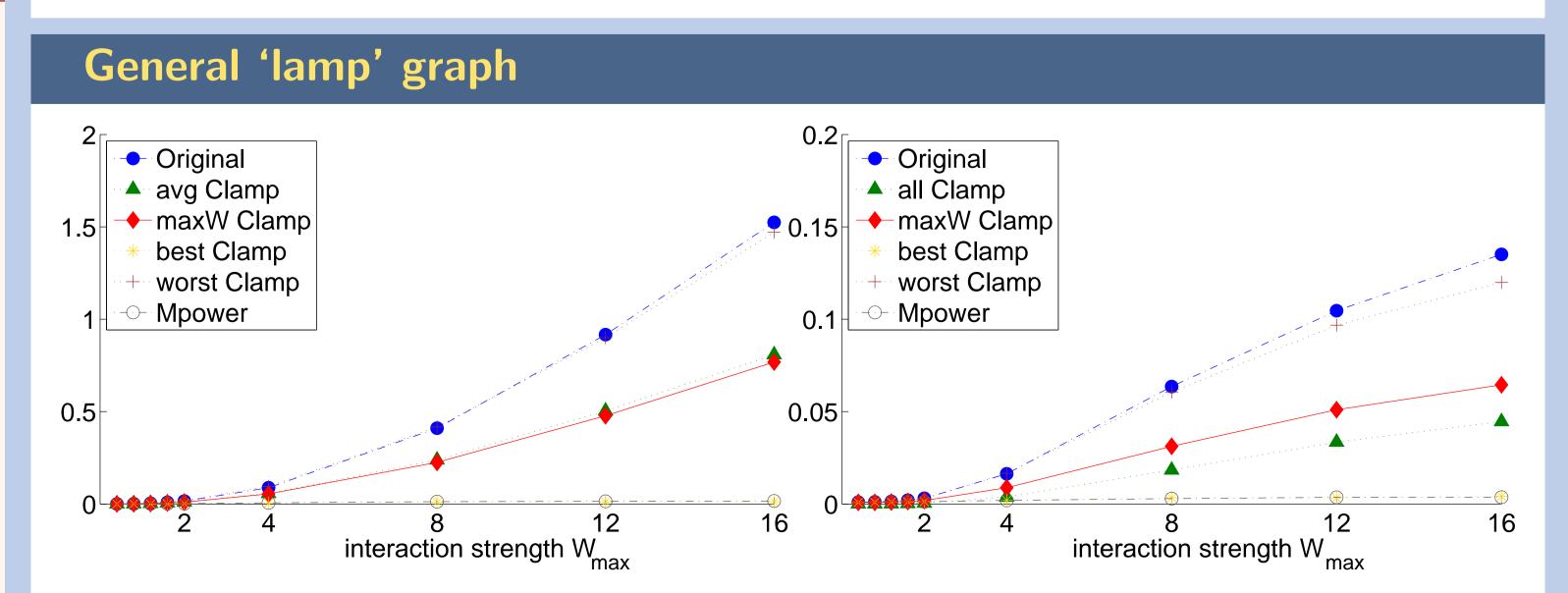
- $Z_B \leq Z_B^{(i)} \leq Z_B^{(ij)} \leq \cdots \leq Z$

Experiments

We investigate error of $Z_B^{(i)} = Z_B|_{X_i=0} + Z_B|_{X_i=1}$ compared to error of original Z_B , various methods of choosing variable to clamp X_i :

- best Clamp best improvement in error of Z in hindsight
- avg Clamp average performance
- maxW max sum of incident edge weights $\sum_{i \in N(i)} |W_{ij}|$
- Mpower more sophisticated, tries to break heavy cycles
- Potentials drawn at random: unary $\theta_i \sim U[-2,2]$,





• worst Clamp worst improvement in error of Z in hindsight

edge $W_{ij} \sim U[-W_{max}, W_{max}]$ for general, $W_{ij} \sim U[0, W_{max}]$ for attractive models

As *n* grows, still helpful even just to clamp one variable (see paper)

NIPS, *Montreal*, *December 2014*