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Motivation: undirected graphical models

Powerful way to represent relationships across variables

Many applications including: computer vision, social network
analysis, deep belief networks, protein folding...

In this talk, focus on binary pairwise (Ising) models

Example: Grid for computer vision (attractive)
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Motivation: undirected graphical models

Example: Part of epinions social network (general)

Figure courtesy of N. Ruozzi
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Motivation: undirected graphical models

x4 x5 x6 x7 x8

x1 x2 x3

Example: Restricted Boltzmann machine (general)

A fundamental problem is marginal inference

Estimate marginal probability distribution of one variable

p(x1) =
∑

x2,...,xn

p(x1, x2, . . . , xn)

Closely related to computing the partition function

Computationally intractable, focus on approximate methods

Will show that combining approximate methods with clamping
can be very fruitful for marginal inference
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Outline: Clamping can be very helpful

1. Motivation

2. Background on inference and clamping

Combining clamping variables with variational inference, we obtain

3. Strong theoretical results

4. Promising empirical results
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Background: Binary pairwise models

Binary variables X1, . . . ,Xn ∈ {0, 1}
Pairwise potentials θ

Write x = (x1, . . . , xn) for one configuration, θ · x for its score

Probability distribution given by

p(x) =
1

Z
exp(θ · x)

To ensure probabilities sum to 1, need normalizing constant

Z =
∑

x exp (θ · x)

Z is called the partition function, a fundamental quantity we’d
like to compute or approximate
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Background: A variational approximation

Recall p(x) =
1

Z
exp(θ · x)

Exact inference may be viewed as optimization,

logZ = max
µ∈M

[ θ · µ+ S(µ) ]

M is the space of marginals that are globally consistent, S is
the (Shannon) entropy

Bethe makes two pairwise approximations,

logZB = max
q∈L

[ θ · q + SB(q) ]

L is the space of marginals that are pairwise consistent, SB is
the Bethe entropy approximation
Loopy Belief Propagation finds stationary points of Bethe
On acyclic models, Bethe is exact ZB = Z
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Background: What is clamping?

x2

x3
x4

x1

x5

x10
x6
x7

x9
x8

Example ‘lamp’ graph

To compute the partition function Z , can
enumerate all states and sum

x1x2 . . . x10 score exp(score)

0 0 . . . 0 1 2.7
0 0 . . . 1 2 7.4
. . . . . . . . .
0 1 . . . 1 1.3 3.7
1 0 . . . 0 -1 0.4
1 0 . . . 1 0.2 1.2
. . . . . . . . .
1 1 . . . 1 1.8 6.0

Total Z = 47.1
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Background: What is clamping?

x2

x3
x4

x5

x10
x6
x7

x9
x8

x1

Can split Z in two: clamp variable X1 to each of
{0, 1}, then add the two sub-partition functions:

Z = Z |X1=0 + Z |X1=1

When clamp a variable, remove it from the graph

x1x2 . . . x10 score exp(score)

0 0 . . . 0 1 2.7
0 0 . . . 1 2 7.4
. . . . . . . . .
0 1 . . . 1 1.3 3.7 27.5

1 0 . . . 0 -1 0.4
1 0 . . . 1 0.2 1.2
. . . . . . . . .
1 1 . . . 1 1.8 6.0 19.6

Total Z = 47.1

p(X1 = 1) =
Z |X1=1

Z
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Background: What is clamping?

x2

x3
x4

x5

x10
x6
x7

x9
x8

x1

Can split Z in two: clamp variable X1 to each of
{0, 1}, then add the two sub-partition functions:

Z = Z |X1=0 + Z |X1=1

When clamp a variable, remove it from the graph

After removing the clamped variable, if the remaining
sub-models are acyclic then can find sub-partition functions
efficiently (BP, Bethe approximation is exact on trees)

If not,
Can repeat: clamp and remove variables until acyclic, or
Settle for approximate inference on sub-models

Z
(i)
B := ZB |Xi=0 + ZB |Xi=1

Will this always lead to a better estimate than approximate
inference on the original model? Often but not always
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A variational perspective on clamping

Bethe approximation

logZB = max
q∈L

[ θ · q + SB(q) ]

Observe that when Xi is clamped, we optimize over a subset

logZB |Xi=0 = max
q∈L:qi=0

[ θ · q + SB(q) ]

⇒ ZB |Xi=0 ≤ ZB , similarly ZB |Xi=1 ≤ ZB

Recap of Notation

Z true partition function
ZB Bethe optimum partition function

Z
(i)
B := ZB |Xi=0 + ZB |Xi=1

approximation obtained when
clamp and sum approximate

sub-partition functions
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Clamping variables: an upper bound on Z

From before,

Z
(i)
B := ZB |Xi=0 + ZB |Xi=1 ≤ 2ZB

Repeat: clamp and remove variables, until remaining model is
acyclic, where Bethe is exact
For example, if must delete 2 variables Xi ,Xj , obtain

Z
(ij)
B :=

∑
a,b∈{0,1}

ZB |Xi=a,Xj=b ≤ 22ZB

But sub-partition functions are exact, hence LHS = Z
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x10
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Clamping variables: an upper bound on Z

Z
(i)
B := ZB |Xi=0 + ZB |Xi=1 ≤ 2ZB

Repeat: clamp and remove variables, until remaining model is
acyclic, where Bethe is exact

Let ν(G ) be the minimum size of a feedback vertex set

Theorem (result is tight)

Z ≤ 2νZB
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Attractive models: a lower bound on Z

An attractive model is one with all edges attractive

Recall definition,

Z
(i)
B := ZB |Xi=0 + ZB |Xi=1

Theorem

For an attractive binary pairwise model and any Xi , ZB ≤ Z
(i)
B

Corollary (similar proof to earlier result; first proved Ruozzi, 2012)

For an attractive binary pairwise model, ZB ≤ Z

⇒ each clamp and sum can only improve ZB
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Experiments: Which variable to clamp?

Compare error | logZ − logZ
(i)
B | to original error | logZ − logZB |

for various ways to choose which variable Xi to clamp:

best Clamp best improvement in error of Z in hindsight

worst Clamp worst improvement in error of Z in hindsight

avg Clamp average performance

maxW max sum of incident edge weights
∑

j∈N(i) |Wij |
Mpower more sophisticated (come to poster)

x2

x3
x4

x1

x5

x10
x6
x7

x9
x8

x10

x1
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Experiments: attractive random graph n = 10, p = 0.5

unary θi ∼ U[−2, 2],
edge Wij ∼ U[0,Wmax ]

Error of estimate of logZ

Observe

Clamping any variable helps
significantly

Our selection methods
perform well

2 4 8 12 16
0

0.05
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0.25

max
              interaction strength W

Avg `1 error of singleton

marginals

Using Frank-Wolfe to optimize

Bethe free energy
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worst Clamp
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              interaction strength W
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Experiments: general random graph n = 10, p = 0.5

unary θi ∼ U[−2, 2],
edge Wij ∼ U[−Wmax ,Wmax ]

Error of estimate of logZ

Results remain promising
for higher n 2 4 8 12 16
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AW
Avg `1 error of singleton

marginals

Using Frank-Wolfe to optimize

Bethe free energy

2 4 8 12 16
0

0.1

0.2

0.3

0.4

max

 

 

Original
all Clamp
maxW Clamp
best Clamp
worst Clamp
Mpower

              interaction strength W 18 / 19



Recap of theoretical results

Simple observation on variational view of clamping variables

gives Z
(i)
B ≤ 2ZB

Repeat until graph is acyclic, where Bethe is exact

Yields effective upper bound on Z

For attractive models,

Theorem: ZB ≤ Z
(i)
B for any Xi

Then argue as above to yield simple new proof of ZB ≤ Z

Clamping any variable and summing can only improve ZB

To prove Theorem above, derive convexity Master Theorem
which subsumes all these, come to poster Th36 for details

Thank you!

Slides and full paper at www.cs.columbia.edu/~adrian
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Supplementary material

Extra slides for questions or further
explanation
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Clamping variables: strongest result for attractive models

logZB = maxq∈L [ θ · q + SB(q) ]

For any variable Xi and x ∈ [0, 1], let qi = q(Xi = 1) and

logZBi (x) = maxq∈L:qi=x [ θ · q + SB(q) ]

ZBi (x) is ‘Bethe partition function constrained to qi = x ’

Note: ZBi (0) = ZB |Xi=0, ZBi (x
∗) = ZB , ZBi (1) = ZB |Xi=1

Define new function,

Ai (qi ) := logZBi (qi )− Si (qi )

Theorem (implies all other results for attractive models)

For an attractive binary pairwise model, Ai (qi ) is convex

Builds on derivatives of Bethe free energy from [WJ13]
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Example: here clamping any variable worsens ZB estimate

x1 x2

x3x4

Blue edges are attractive with edge weight +2
Red edges are repulsive with edge weight −2
No unary potentials

(performance is only slightly worse with clamping)
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Experiments: attractive complete graph n = 10, TRW

unary θi ∼ U[−0.1, 0.1],
edge Wij ∼ U[−Wmax ,Wmax ]

Error of estimate of logZ

Note low unary potentials
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Clamping a variable ‘breaks

symmetry’ and overcomes

TRW advantage
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Experiments: general complete graph n = 10, TRW

unary θi ∼ U[−2, 2],
edge Wij ∼ U[0,Wmax ]

Error of estimate of logZ

Note regular singleton

potentials
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Experiments: attractive random graph n = 50, p = 0.1

unary θi ∼ U[−2, 2],
edge Wij ∼ U[0,Wmax ]

Error of estimate of logZ

‘worst Clamp’ performs worse

here due to suboptimal

solutions found by Frank-Wolfe
2 4 8 12 16

0

0.05

0.1

0.15

0.2

0.25

max
              interaction strength W

AW
Avg `1 error of singleton

marginals

2 4 8 12 16
0

0.02

0.04

0.06

0.08

max
              interaction strength W 25 / 19



Experiments: general random graph n = 50, p = 0.1

unary θi ∼ U[−2, 2],
edge Wij ∼ U[−Wmax ,Wmax ]

Error of estimate of logZ

Performance still good for

clamping just one variable
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Experiments: attractive ‘lamp’ graph

unary θi ∼ U[−2, 2],
edge Wij ∼ U[0,Wmax ]

Error of estimate of logZ

Mpower performs well,

significantly better than maxW
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Experiments: general ‘lamp’ graph

unary θi ∼ U[−2, 2],
edge Wij ∼ U[−Wmax ,Wmax ]

Error of estimate of logZ

Mpower performs well,

significantly better than maxW
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