Clamping Variables and Approximate Inference

Adrian Weller

P<

Slides and full paper at
www.cs.columbia.edu/~adrian

Work with Tony Jebara, Columbia University


www.cs.columbia.edu/~adrian

Motivation: undirected graphical models

@ Powerful way to represent relationships across variables

@ Many applications including: computer vision, social network
analysis, deep belief networks, protein folding...

o In this talk, focus on binary pairwise (Ising) models
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Motivation: undirected graphical models

Example: Part of epinions social network (general)

Figure courtesy of N. Ruozzi



Motivation: undirected graphical models
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Example: Restricted Boltzmann machine (general)

A fundamental problem is marginal inference
@ Estimate marginal probability distribution of one variable

P(Xl) = Z P(X17X27 s ,X,-,)
X2, Xn)

@ Closely related to computing the partition function
@ Computationally intractable, focus on approximate methods

@ Will show that combining approximate methods with clamping
can be very fruitful for marginal inference



Outline: Clamping can be very helpful

1. Motivation

2. Background on inference and clamping

Combining clamping variables with variational inference, we obtain
3. Strong theoretical results

4. Promising empirical results



Background: Binary pairwise models

Binary variables X, ..., X, € {0,1}

Pairwise potentials 6

Write x = (x1, ..., xn) for one configuration, 6 - x for its score
Probability distribution given by

plx) = S exp(0 - x)

To ensure probabilities sum to 1, need normalizing constant

Z=7>  exp(f-x)

Z is called the partition function, a fundamental quantity we'd
like to compute or approximate
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Background: A variational approximation

Recall p(x) = %exp(é? - X)

@ Exact inference may be viewed as optimization,
logZ =max|[0-u+S
gZ =max[0-p+5(n)]
M is the space of marginals that are globally consistent, S is
the (Shannon) entropy

@ Bethe makes two pairwise approximations,
log Zg = max[ 0 -q+ Sg(q) ]
qel

L is the space of marginals that are pairwise consistent, Sg is
the Bethe entropy approximation

@ Loopy Belief Propagation finds stationary points of Bethe

@ On acyclic models, Bethe is exact Zg = Z



Background: What is clamping?

Example ‘lamp’ graph

To compute the partition function Z, can
enumerate all states and sum

X1X2...Xx1o Score  exp(score)

00...0 1 2.7
00...1 2 7.4
01...1 1.3 3.7
10...0 -1 0.4
10...1 0.2 1.2
11...1 1.8 6.0
Total Z = 47.1




Background: What is clamping?

% /__\J Can split Z in two: clamp variable Xj to each of
< {0,1}, then add the two sub-partition functions:
) Z="2x,—0+ Z|x=1
@\@/X When clamp a variable, remove it from the graph
@ T T
X1x2...x1o Score  exp(score)
00...0 1 2.7
00...1 2 7.4
01...1 1.3 3.7 27.5 Z|
10...0 -1 0.4 p(X1:1):%
10...1 0.2 1.2
11...1 1.8 6.0 19.6
Total Z = 47.1




Background: What is clamping?

% /__\J Can split Z in two: clamp variable Xj to each of
< {0,1}, then add the two sub-partition functions:
@ Z:Z‘x1:0+Z|X1:1
@\@/X When clamp a variable, remove it from the graph

@ After removing the clamped variable, if the remaining
sub-models are acyclic then can find sub-partition functions
efficiently (BP, Bethe approximation is exact on trees)

10/19



Background: What is clamping?

XF—xd Can split Z in two: clamp variable Xj to each of
< {0,1}, then add the two sub-partition functions:
Z = Z‘xlzo + Z|X1:1

@\\1)/)( When clamp a variable, remove it from the graph

@ After removing the clamped variable, if the remaining
sub-models are acyclic then can find sub-partition functions
efficiently (BP, Bethe approximation is exact on trees)

e If not,
e Can repeat: clamp and remove variables until acyclic, or

e Settle for approximate inference on sub-models
z) = Zp

x=0 + ZB|x,=1
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Background: What is clamping?

XF—xd Can split Z in two: clamp variable Xj to each of
< {0,1}, then add the two sub-partition functions:
Z = Z‘xlzo + Z|X1:1

@\\1)/)( When clamp a variable, remove it from the graph

@ After removing the clamped variable, if the remaining
sub-models are acyclic then can find sub-partition functions
efficiently (BP, Bethe approximation is exact on trees)

e If not,

e Can repeat: clamp and remove variables until acyclic, or
e Settle for approximate inference on sub-models
Z,(gi) = Zg|x—0 + ZB|x=1
Will this always lead to a better estimate than approximate
inference on the original model?
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Background: What is clamping?

XF—xd Can split Z in two: clamp variable Xj to each of
< {0,1}, then add the two sub-partition functions:
Z = Z‘xlzo + Z|X1:1

@\\1)/)( When clamp a variable, remove it from the graph

@ After removing the clamped variable, if the remaining
sub-models are acyclic then can find sub-partition functions
efficiently (BP, Bethe approximation is exact on trees)

e If not,

e Can repeat: clamp and remove variables until acyclic, or
e Settle for approximate inference on sub-models
Z,(gi) = Zg|x—0 + ZB|x=1
Will this always lead to a better estimate than approximate
inference on the original model? Often but not always
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A variational perspective on clamping

@ Bethe approximation

log Zg = max[ 8- q+ Sg(q) ]
qell

@ Observe that when X; is clamped, we optimize over a subset

log Z|x=0 = max [6-q+5p(q)]
qel:qi=

= ZB’X,-ZO < ZB, S|m||ar|y ZB|X,-:1 < ZB

Recap of Notation

Z true partition function
ZB Bethe optimum partition function
_ approximation obtained when
Z‘,(B') = ZB|x.—0 + Zg|x.—1  clamp and sum approximate
sub-partition functions
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Clamping variables: an upper bound on Z

@ From before,
Z,(gi) = ZB|x—0+ ZB|x=1 < 2ZB

@ Repeat: clamp and remove variables, until remaining model is
acyclic, where Bethe is exact
@ For example, if must delete 2 variables X, Xj, obtain

z9 = N Zelx—ax—b < 2278
a,be{0,1}
But sub-partition functions are exact, hence LHS = Z
/@\ = @\
P & R
R < <

29 X X L X X 29 X
ey ey ey

12 /19



Clamping variables: an upper bound on Z

70 = Zg|x—o + Zslx—1 < 275

@ Repeat: clamp and remove variables, until remaining model is
acyclic, where Bethe is exact

@ Let v(G) be the minimum size of a feedback vertex set

Theorem (result is tight)

Z<2Zg
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Clamping variables: an bound on Z

Z,:(g') = ZB|x,—0 + ZB|x;=1 < 2Zp

@ Repeat: clamp and remove variables, until remaining model is
acyclic, where Bethe is exact

@ Let v(G) be the minimum size of a feedback vertex set

Theorem (result is tight)

Z < 27p
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Attractive models: a lower bound on Z

@ An attractive model is one with all edges attractive

@ Recall definition,

Z,(g’) = ZB|x,=0 + ZB|x.=1

For an attractive binary pairwise model and any X;, Zg < Zg)

Corollary (similar proof to earlier result; first proved Ruozzi, 2012)

For an attractive binary pairwise model, Zg < Z
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Attractive models: a lower bound on Z

@ An attractive model is one with all edges attractive

@ Recall definition,

Z,(g’) = ZB|x,=0 + ZB|x.=1

For an attractive binary pairwise model and any X;, Zg < Zg)

Corollary (similar proof to earlier result; first proved Ruozzi, 2012)

For an attractive binary pairwise model, Zg < Z

= each clamp and sum can only improve Zg
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Experiments: Which variable to clamp?

Compare error |log Z — log Zg)| to original error |log Z — log Zg|
for various ways to choose which variable X; to clamp:

best Clamp  best improvement in error of Z in hindsight

worst Clamp worst improvement in error of Z in hindsight

avg Clamp  average performance

maxW  max sum of incident edge weights >_;c ;) | Wil

Mpower more sophisticated (come to poster)
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Experiments: attractive random graph n =10, p = 0.5

unary 6; ~ U[-2,2],
edge Wjj ~ U[0, Wiax]

Error of estimate of log Z

Observe

@ Clamping any variable helps
significantly

@ Our selection methods
perform well

Avg ¢ error of singleton

marginals

Using Frank-Wolfe to optimize
Bethe free energy
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Experiments: general random graph n

unary 6; ~ U[-2,2],
edge VVij ~ U[_ VVmax-, Wmax]

Error of estimate of log Z

Results remain promising
for higher n

Avg {1 error of singleton

marginals

Using Frank-Wolfe to optimize
Bethe free energy
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Recap of theoretical results

@ Simple observation on variational view of clamping variables
gives Z) < 27

@ Repeat until graph is acyclic, where Bethe is exact

@ Yields effective upper bound on Z

For attractive models,
@ Theorem: Zg < Zg) for any X;
@ Then argue as above to yield simple new proof of Zg < Z
@ Clamping any variable and summing can only improve Zg

@ To prove Theorem above, derive convexity Master Theorem
which subsumes all these, come to poster Th36 for details

Thank you!

Slides and full paper at www.cs.columbia.edu/~adrian
19/19
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Supplementary material

Extra slides for questions or further
explanation
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Clamping variables: strongest result for attractive models

log Zg = maxgeL [ 6 - g+ SB(q) |

e For any variable X; and x € [0, 1], let g; = g(X; = 1) and
log Zgi(x) = MaXgel.:q;=x [0-9+ SB(q)]

@ Zgi(x) is 'Bethe partition function constrained to q; = x'
Note: Zgi(0) = Zg|x,—0, Zgi(x*) = ZB, Zgi(1) = ZB|x,=1
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Clamping variables: strongest result for attractive models

log Zg = maxgeL [ 6 - g+ SB(q) |

e For any variable X; and x € [0, 1], let g; = g(X; = 1) and
log Zgi(x) = maxqeL.q—x [0 - ¢+ SB(q) ]
@ Zgi(x) is 'Bethe partition function constrained to q; = x'
Note: Zgi(0) = Zg|x.—0, Zsi(x*) = ZB, Zgi(1) = ZB|x.—=1
@ Define new function,
Ai(qi) := log Zgi(qi) — Si(qi)

Theorem (implies all other results for attractive models)

For an attractive binary pairwise model, A;(q;) is convex

@ Builds on derivatives of Bethe free energy from [\WJ13]
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Example: here clamping any variable worsens Zg estimate

Blue edges are attractive with edge weight +2
Red edges are repulsive with edge weight —2
No unary potentials

(performance is only slightly worse with clamping)



Experiments: attractive complete graph n = 10, TRW

unary 0; ~ U[—0.1,0.1],
edge VVij ~ U[_ VVmax-, Wmax]

Error of estimate of log Z

Note low unary potentials

Avg /1 error of singleton
marginals

Clamping a variable ‘breaks
symmetry' and overcomes
TRW advantage
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Experiments: general complete graph n = 10, TRW

. _ 507,
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Experiments: attractive random graph n =50, p = 0.1

unary 6; ~ U[-2,2],
edge VV, ~ U[O Wmax]

Error of estimate of log Z

‘worst Clamp’ performs worse
here due to suboptimal
solutions found by Frank-Wolfe

Avg {1 error of singleton

marginals
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Experiments: general random graph n =50,p = 0.1

. — 30
unary 9’ ~ U[ 2? 2]? -8 Original /’,
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Experiments: attractive ‘lamp’ graph

unary 6; ~ U[-2,2], 0.257
edge W ~ U[O Wmax] 0.2 AT °
Error of estimate of log Z 0.15

Mpower performs well,

significantly better than maxW
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Experiments: general ‘lamp’ graph

unary 6; ~ U[-2,2],
edge VVij ~ U[_ Wmax-, Wmax]

Error of estimate of log Z

Mpower performs well,
significantly better than maxW

Avg ¢ error of singleton
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