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Abstract

It was recently proved using graph covers (Ruazzi, 201 )ttteaBethe partition
function is upper bounded by the true partition function éobinary pairwise
model that is attractive. Here we provide a new, arguablypmproof from
first principles. We make use of the idea of clamping a vaeidbla particular
value. For an attractive model, we show that summing oveBtithe partition
functions for each sub-model obtained after clamping amiakiée can only raise
(and hence improve) the approximation. In fact, we derive@nger result that
may have other useful implications. Repeatedly clampirtdj we obtain a model
with no cycles, where the Bethe approximation is exactdgi¢he result. We also
provide a related lower bound on a broad class of approxipstéion functions
of general pairwise multi-label models that depends onlythentopology. We
demonstrate that clamping a few wisely chosen variablebeani practical value
by dramatically reducing approximation error.

1 Introduction

Marginal inference and estimating the partition functiam @indirected graphical models, also
called Markov random fields (MRFs), are fundamental prolslém machine learning. Exact
solutions may be obtained via variable elimination or thectfion tree method, but unless the
treewidth is bounded, this can take exponential time (F&888; Lauritzen and Spiegelhalter, 1988;
Wainwright and Jordan, 2008). Hence, many approximate agsthave been developed.

Of particular note is the Bethe approximation, which is vydesed via thdoopy belief propagation
algorithm (LBP). Though this is typically fast and resulte aften accurate, in general it may con-
verge only to a local optimum of the Bethe free energy, or natyconverge at all (McEliece etlal.,
1998;| Murphy et dl., 1999). Another drawback is that, urgitently, there were no guarantees
on whether the returned approximation to the partition fiamcwas higher or lower than the true
value. Both aspects are in contrast to methods such aseifr@eweightecapproximation (TRW,
Wainwright et al.| 2005), which features a convex free epamy is guaranteed to return an upper
bound on the true partition function. Nevertheless, erogily, LBP or convergentimplementations
of the Bethe approximation often outperform other methddisshi et al., 2009; Weller et al., 2014).

Using the method of graph covers (Vontobel, Z013), Ruoz¥1#2 recently proved that the optimum
Bethe partition function provides a lower bound for the tvatie, i.e.Zp < Z, for discrete binary
MRFs with submodular log potential cost functions of anyyarHere we provide an alternative
proof for attractive binary pairwise models. Our proof daesrely on any methods of loop series
(Sudderth et al., 2007) or graph covers, but rather buildsiodamental properties of the derivatives
of the Bethe free energy. Our approach applies only to bimagels (whereas Ruozzi, 2012 applies
to any arity), but we obtain stronger results for this cléissn which Zg < Z easily follows. We
use the idea aflampinga variable and considering the approximate sub-partitioctions over the
remaining variables, as the clamped variable takes eadh pbssible values.

Notation and preliminaries are presentedfzh In §3, we derive a lower bound, not just for the
standard Bethe partition function, but for a range of apjnake partition functions over multi-label



variables that may be defined from a variational perspeasvan optimization problem, based only
on the topology of the model. I§, we consider the Bethe approximation for attractive lyirpair-
wise models. We show that clamping any variable and sumnhia@ethe sub-partition functions
over the remaining variables can only increase (hence ive)tbe approximation. Together with a
similar argument to that used #8, this proves tha¥z < Z for this class of model. To derive the
result, we analyze how the optimum of the Bethe free energgwvas the singleton marginal of one
particular variable is fixed to different values[in 1]. Remarkably, we show that the negative of this
optimum, less the singleton entropy of the variable, is averriunction of the singleton marginal.
This may have further interesting implications. We presuteriments irf5, demonstrating that
clamping even a single variable selected using a simplasiguran be very beneficial.

1.1 Related work

Branching or conditioning on a variable (or set of variapbasd approximating over the remaining
variables has a fruitful history in algorithms such as braand-cut/(Padberg and Rinaldi, 1991;
Mitchell,12002), work on resolution versus search (Rish Bedhter, 2000) and various approaches
of (Darwiche, 2009, Chapter 8). Cutset conditioning wasuised by Pearl (1988) and refined
by|Peot and Shachter (1991) as a method to render the remaapnlogy acyclic in preparation
for belief propagation. Eaton and Ghahramani (2009) d@ezldhis further, introducing theondi-
tioned belief propagatioalgorithm together withback-belief-propagatioas a way to help identify
which variables to clampl._Liu et al. (2012) discussed feekbaessage passing for inference in
Gaussian (not discrete) models, deriving strong resultshie particular class of attractive mod-
els..Choi and Darwiche (2008) examined methods to apprdgitha partition function by deleting
edges.

2 Preliminaries

We consider a pairwise model withvariablesX;, ..., X,, and graph topologyV, £): V contains
nodes{1,...,n} where: corresponds to{;, and€ C V x V contains an edge for each pairwise
relationship. We sometimes consider multi-label modelengreach variablé&; takes values in
{0,...,L; — 1}, and sometimes restrict attention to binary models whéfec B = {0,1} Vi.
Letz = (x1,...,z,) be a configuration of all the variables, and(i) be the neighbors of. For

all analysis of binary models, to be consistent with Wellamgl Ten|(2001) and Weller and Jebara

(2013), we assume a reparameterization suchpthgt= i , Where the energy of a configura-
tion, B = -3, iz — Z(M)eg Wiz, with singleton potential8; and edge weight®;;.

2.1 Clamping a variable and related definitions

We shall find it useful to examine sub-partition functionsaidbed byclampingone particular vari-
able X, that is we consider the model on the- 1 variablesX;, ..., X; 1, X;11,..., X,, obtained
by settingX; equal to one of its possible values.

Let Z| x,—. be the sub-partition function on the model obtained bysgti; = a,a € {0, ..., L; —
1}. Observe that true partition functions and marginals afecemsistent in the following sense:

L;—1
: Z|x,=a
Z=3 Zlx—VeV, pXi=a)=_—F1"— 1)
=0 ij'o Z|x,=j

This is not true in general for approximate forms of inferehbut if the model has no cycles, then
in many cases of interesi] (1) does hold, motivating thefdlig definition.

Definition 1. We say an approximation to the log-partition functidn is ExactOnTreef it may be
specified by the variational formulalog Z 4 = mingecg Fa(q) where: (1)Q is some compact space
that includes the marginal polytope; (2), is a function of the (pseudo-)distributign(typically a
free energy approximation); and (3) For any model, whenavsubset of variabley’ C V is
clamped to particular valueB = {p; € {0,...,L; — 1}, VX, € V'},i.e. VX; € V', we constrain

For example, consider a single cycle with positive edge hisigThis haszs < Z (Weller et al.[ 2014),
yet after clamping any variable, each resulting sub-maleltree hence the Bethe approximation is exact.



X, = p;, which we write a3/’ + P, and the remaining induced graphBn V' is acyclic, then the
approximation is exact, i.eZ|y«p = Z|y«p. Similarly, define an approximation to be in the
broader class dlotSmallerOnTreesH it satisfies all of the above properties except that caadit

(3) is relaxed taZ 4|y« p > Z|y«p. Note that the Bethe approximation is ExactOnTrees, and
approximations such as TRW are NotSmallerOnTrees, in baseswhether using the marginal
polytope or any relaxation thereof, such as the cycle ol loalytope (Weller et all, 2014).

We shall derive bounds afi4 with the following idea: Obtain upper or lower bounds on tppr@x-
imation achieved by clamping and summing over the approtd@raab-partition functions; Repeat
until an acyclic graph is reached, where the approximasaither exact or bounded. We introduce
the following related concept from graph theory.

Definition 2. A feedback vertex s€EVS) of a graph is a set of vertices whose removal leaves a
graph without cycles. Determining if there exists a feedlbagrtex set of a given size is a classi-
cal NP-hard problen (Karp, 1972). There is a significantditiere on determining the minimum
cardinality of an FVS of a grap&y, which we write as/(G). Further, if vertices are assigned non-
negative weights, then a natural problem is to find an FVS mitiimum weight, which we write as

v, (G). An FVS with a factor 2 approximation ta, (G) may be found in tim&(|V| + |£|log|£])
(Bafna etal.| 1999). For pairwise multi-label MRFs, we magate a weighted graph from the
topology by assigning each noda weight oflog L;, and then compute the correspondindG).

3 Lower Bound on Approximate Partition Functions

We obtain a lower bound on any approximation that is NotSen@ih Trees by observing that, >
ZA|x,=; ¥j from the definition (the sub-partition functions optimiageo a subset).

Theorem 3. If a pairwise MRF has topology with an FVS of sizeand corresponding values
L.,..., Ly, then for any approximation that is NotSmallerOnTregs, > ﬁ

Proof. We proceed by induction on. The base case = 0 holds by the assumption that,
is NotSmallerOnTrees. Now assume the result holdsefer 1 and consider a MRF which re-
quiresn vertices to be deleted to become acyclic. Clamp varidbleat each of itsL,, values

to create the approximatioﬁff) = ngo’l Zal|x,=;j. By the definition of NotSmallerOnTrees,

Za > Za|x,=; Y7, and by the inductive hypothesiB|x, —; > I_ZIL’S”;:LJ
i=1 i
n) L,—1 Ln—1
Hence,LnZs 2 74" = Y272 Zalx,= = e S0 Zlxa=s = b -

By considering an FVS with minimuf["_, L;, Theorenfi B is equivalent to the following result.
Theorem 4. For any approximation that is NotSmallerOnTregs, > Ze~ V.

This bound applies to general multi-label models with anyvgiae and singleton potentials (no
need for attractive). The bound is trivial for a tree, buealty for a binary model with one cycle we
obtain thatZp > Z/2 for any potentials, even over the marginal polytope. Thenlas tight, at
least for uniformL; = L Vi The bound depends only on the vertices that must be deletgelltb
a graph with no cycles, not on the number of cycles (whichrglegpper bounds (G)). For binary
models, exact inference takes tiB¢(|V| — |v(G)|)27(%).

4 Attractive Binary Pairwise Models

In this Section, we restrict attention to the standard Betbproximation. We shall use results
derived in (Welling and Teh, 2001) and (Weller and Jebard320and adopt similar notation. The
Bethe partition functionZg, is defined as in Definitiohl 1, whei@ is set as thdocal polytope
relaxation and?4 is the Bethe free energy, given B(q) = E,(E) — Sg(q), whereE is the energy

2For example, in the binary case: consider a sub-MRF on a wyiteno singleton potentials and uniform,
very high edge weights. This can be shown to hdye~ Z/2 (Weller et al.| 2014). Now connectof these
together in a chain using very weak edges (this constructidoe to N. Ruozzi).



andSp is the Bethe pairwise entropy approximation (see Wainwégpd Jordan, 2008 for details).
We consider attractive binary pairwise models and applylaimlamping ideas to those usedd8.

In §4.7 we show that clamping can never decrease the approxBetite partition function, then
use this result iff4.2 to prove thaZg < Z for this class of model. In deriving the clamping result
of §4.1, in Theorerhl7 we show an interesting, stronger resulbenthe optimum Bethe free energy
changes as the singleton margigais varied ovef0, 1].

4.1 Clamping a variable can only increase the Bethe partitio function

Let Zp be the Bethe partition function for the original model. ClawariableX; and form the new
approximationzg) = Z;:O Zp|x,=;. Inthis Section, we shall prove the following Theorem.

Theorem 5. For an attractive binary pairwise model and any variabie, Zg) > 7pg.

We first introduce notation and derive preliminary resuitgich build to Theoreril7, our strongest
result, from which Theoreil 5 easily follows. Let= (q1, ..., q»,) be a location im-dimensional
pseudomarginal space, i.¢.is the singleton pseudomarginglX; = 1) in the local polytope. Let
F(q) be the Bethe free energy computed aising Bethe optimum pairwise pseudomarginals given
by the formula forg(X; = 1,X; = 1) = &;;(qi, g5, Wi;) in (Welling and Teh, 2001), i.e. for an
attractive model, for edgg, j), &;; is the lower root of

&l — 1+ aij(gi + ;)16 + (1 + aig)giq; = 0, 2

wherea;; = Vi — 1, andW;; > 0 is the strength (associativity) of the log-potential edgsght.

Let G(¢q) = —F(q). Note thatlog Zp = max,cp,1» G(¢). For anyz € [0,1], consider the
optimum constrained by holding = z fixed, i.e. letlog Zg;(x) = maxge(o,1)n:q,= 9(q). Let
r*(z) = (r{(z),...,77_1(2),74 1 (2),. .., 7 (x)) with corresponding pairwise tern{g?; }, be an

arg max for where this optimum occurs. Observe that Z5;(0) = log Zg|x,—0,log Zpi(1) =
log Zp|x,=1 andlog Zp = log Zpi(q;) = maxgc(o,1)» G(q), Whereg; is a location ofX; at which
the global optimum is achieved.

To prove Theoreni]5, we need a sufficiently good upper boundogi¥s;(¢f) compared to

log Z5:(0) andlog Zp,(1). First we demonstrate what such a bound could be, then phate t
this holds. LetS;(z) = —xzlogz — (1 — z)log(1 — z) be the standard singleton entropy.

Lemma 6 (Demonstrating what would be a sufficiently good upper baamidg Zz). If 3z € [0, 1]
such thafog Zp < xzlog Zp;(1) + (1 — x)log Zp;(0) + S;(z), then:

() Z5i(0) + Zgi(1) = Zp > ™ fo(x) wheref(z) = 1 + e — emeT5i(®),

m = min(log Zp;(0),log Zg;(1)) andc = | log Zp,(1) — log Z5;(0)|; and

(i) Vz € [0,1], fo(x) > 0 with equality iffx = o(c) = 1/(1 + exp(—c)), the sigmoid function.

Proof. (i) This follows easily from the assumption. (ii) This is éashecked by differentiating. It
is also given in[(Koller and Friedman, 2009, Propositior8).1. O

See Figurel6 in the Supplement for example plots of the fandfi(x). Lemmd® motivates us to
consider if perhap®g Z; () might be upper bounded hylog Zp;(1)+(1—xz) log Zp;(0)+S;(x),

i.e. the linear interpolation betweéog Z5;(0) andlog Zp;(1), plus the singleton entropy term
Si(x). Itis easily seen that this would be truerif(¢;) were constant. In fact, we shall show that
r*(g;) varies in a particular way which yields the following, stgem result, which, together with
Lemmd6, will prove Theorefd 5.

Theorem 7. Let A;(q;) = log Zg;(q;) — Si(¢: ). For an attractive binary pairwise modeli;(q;) is
a convex function.

Proof. We outline the main points of the proof. Observe thatr) = max,c(o,1jn:q,—2 9(q) —
Si(z), whereG(q) = —F(q). Note that there may be multipteg max locationsr*(z). As shown
in (Weller and Jebara, 2013} is at least thrice differentiable if, 1)™ and all stationary points lie
in the interior(0, 1)™. Given our conditions, the ‘envelope theorem’ lof (Milgroh®99, Theorem
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Figure 1:3d plots ofv;; = Q;;", using&i; (¢, ¢;, W) from (Welling and Teh, 2001).

1) applies, showing that; is continuous irff0, 1] with right derivativé

AL@) = max G0 = rr" (@) ~ S = max (60 = o (@) -

dz
3
We shall show that this is non-decreasing, which is suffidiahow the convexity result of Theorem
[7. To evaluate the right hand side of (3), we use the deriwatiown by Welling and Teh (2001):

0F b, 11080,
9q;

(1 - Qi)di_l HJEN('L ( 57,])
Qflﬁl [enve (M +8&; —a —a)

i — &ij 1—qi
+log [[ @ij, here defining;; = (1 q__ 5‘_7 ) ( _q )
JENG) + 51] —q; — gj qi

wherelog Q; = log

(as inWeller and Jebara, 2013)

=1
og1 -

dS (ql

A key observation is that thieg ql - term is exactly— ==, and thus cancels theds @) term

1—
at the end of[(3). Henceii-i- (¢:) = MaXrx(g;) [_ Zjej\f(i) log Qij (i, r_j ) 5”)} a

It remains to show that this expression is non-decreasitiggui We shall show something stronger,
that at everyrg max r*(¢;), andforallj € N(i), — log Q;; is non-decreasing v = Yis non-
decreasing. The result then follows since thex of non-decreasing functions is non- d7ecreasmg

See Figuré]l for example plots of thg function, and observe that; appears to decrease with
¢; (which is unhelpful here) whiIe it increases wigh. Now, in an attractive model, the Bethe free

energy issubmodulayi.e. a < 0 (Weller and Jebara, 2013), hencegaincreasesy; (g;) can
only increase (Topkis, 19 78). For our purpose, we must shawa% is sufficiently large such that
%’j > 0. This forms the remainder of the proof.

At any particulararg maxr*(g;), writing v = vi;[q;, 75 (¢:), £ (¢i, 75 (¢:))], we have
do _ov | ov S o
dgi  0q;i  0&; dg; ~ Og; dg;

_Ov N ov 08 drj ( v O} 81}) @
8(]1 8§1j 8qi dqi 8§1j 8L]j 8L]J
7 p 0&;  _ aij(95—i)+4q; i 0&;  _
From (Weller and Jebara, 2013)'&1- = Tt ta &0 and similarly, Erri
% ij % Sij J Sij J
1+f?{é?f;?ﬁz;qjg,_), wherea;; = ¢V — 1. The other partial derivatives are easily derived:
v qi(g;—D)(0—q)+(4+E&;;—qi—g5) (g —&ij) v _ qi(1—g;) and —4
oqi (1—qi)%(qi—&ij)? 198~ (1—qi)(qi—Eij)2? (1 qi)(qi—&ij) "

The only remaining term needed o (4)%{—. The following results are proved in the Appendix,
subject to a technical requirement that ataag max, the reduced HessiaH\;, i.e. the matrix of

3This result is similar to Danskin’s theorefn (Bertsékas 5)9tuitively, for multiplearg max locations,
each may increase at a different rate, so here we must takedahef the derivatives over all therg max.

4 . [ p(X;=1,X,=0) (X;=1) _ p(X;=0[X;=1)
We remark that);; is the ratlo(p(Xi:O,X;:O)) / (;XFO)) = X =0x =0

5



second partial derivatives oF after removing theth row and column, must be non-singular in
order to have an invertible locally linear function. Calisthequired property?. By nature, each
H,; is positive semi-definite. If needed, a small perturbatigueent allows us to assume that no
eigenvalue is 0, then in the limit as the perturbation tend, fTheoreni]7 holds since the limit of
convex functions is convex. Lét] = {1,...,n} andG be the topology of the MRF.

Theorem 8. For anyk € [n] \ 4, let Cj, be the connected component®f : that containsXy,. If
Cr +iis atree, thenx ‘i” ]_[(Ht)ep(wk) m,WhereP(z ~+ k) is the unique path fromto
kin Cy + ¢, and for notatlonal convenience, defirfe= ¢;. Proof in Appendix (subject tB).

In fact, this result applies for any combination of attreetand repulsive edges. The result is re-
markable, yet also intuitive. In the numeraty, — ¢;q: = Cov, (X, X, ), increasing with¥;; and
equal to 0 afV;; = 0 (Weller and Jebara, 2013), and in the denominatdt, — ¢;) = Var,(X;),

hence the ratio is exactly what is called in finance the bets,ofith respect taX,§

In particular, Theorerl8 shows that for afye N (i) whose component is a tregT i:f T qlql)

The next result shows that in an attractive model, additiedges can only reinforce this sensitivity.

Theorem 9. In an attractive model with edgg, j), d%éfi) > if(;fq”) .

to P).

Proof in Appendix (subject

Now collecting all terms, substituting intol(4), and usil®), @fter some algebra yields th@% >0,
as required to prove Theorérh 7. This now also proves Thelgrem 5

4.2 The Bethe partition function lower bounds the true partition function

Theorenib, together with an argument similar to the proofledédreni B, easily yields a new proof
thatZp < Z for an attractive binary pairwise model.

Theorem 10(first proved by Ruozzi, 2012)For an attractive binary pairwise modefz < Z.

Proof. We shall use induction on to show that the following statement holds forall

If a MRF may be rendered acyclic by deletingerticesvy, . .., v,, thenZg < Z.

The base case = 0 holds since the Bethe approximation is ExactOnTrees. Newras the result
holds forn—1 and consider a MRF which requirewertices to be deleted to become acyclic. Clamp

variableX,, and considerB") = ZJ _0ZB|x,=j- By Theorenib75 < Z ). and by the inductive
hypOthESiSZlen’:j < len:j Vj. Hence/Zp < Zj:() ZB|Xn—] < Z] -0 Z|Xn_] =Z. O

5 Experiments

For an approximation which is ExactOnTrees, it is naturélyt@lamping a few variables to remove
cycles from the topology. Here we run experiments on binaippse models to explore the po-
tential benefit of clamping even just one variable, thoughgtocedure can be repeated. For exact
inference, we used the junction tree algorithm. For appnaxé inference, we used Frank-Wolfe
(FW) (Frank and Woll€, 1956): At each iteration, a tangergdrplane to the approximate free en-
ergy is computed at the current point, then a move is madeettdst computed point along the
line to the vertex of the local polytope with the optimum stcon the hyperplane. This proceeds
monotonically, even on a non-convex surface, hence wilvegge (since it is bounded), though
it may be only to a local optimum and runtime is not guarantééds method typically produces
good solutions in reasonable time compared to other appesd8elanger et al., 2013; Weller et al.,
2014) and allows direct comparison to earlier results (Meshl., 2009] Weller et all, 2014). To
further facilitate comparison, in this Section we use theesanbiased reparameterization used by

Weller etal. [(2014), Withs = — 3, ., 05 — Y, iy e ~o iz + (1 — 2:)(1 — )],

SSudderth et al[(2007) defined a different, symmeftic= % for analyzing loop series. In

our context, we suggest that the ratio defined above may beex Bethe beta.



Test models were constructed as follows: kovariables, singleton potentials were dratyn~
Ul=Tmaz: Tmaz); €dge weights were drawli;; ~ U[0, W,,,,] for attractive models, oWV;; ~
U[—Winaz, Winaz] for general models. For models with random edges, we cartsthErdds-Renyi
random graphs (rejecting disconnected samples), wheheeglye has independent probabifitef
being present. To observe the effect of increasingthile maintaining approximately the same
average degree, we examined= 10,p = 0.5 andn = 50, p = 0.1. We also examined models on
a complete graph topology with 10 variables for comparisih WRW in (Weller et al., 2014). 100
models were generated for each set of parameters with egfyin, andW,,,,. values.

Results are displayed in Figufds 210 4 showing average aesardror oflog Z5 vslog Z and aver-
age/; error of singleton marginals. The legend indicates thedhiffit methods use@riginal is FW

on the initial model; then various methods were used to s#iecvariable to clamp, before running
FW on the 2 resulting submodels and combining those resutts Clampfor log Z means average
over all possible clampings, whereas Clamp for marginals computes each singleton marginal as
the estimated, = Zp|x,=1/(ZB|x,=0 + ZB|x,=1). best Clampuses the variable which with
hindsight gave the best improvementdig Z estimate, thereby showing the best possible result for
log Z. Similarly, worst Clamppicks the variable which showed worst performance. Wher on
variable is clamped, the respective marginals are comghtesi for the clamped variabl¥;, use

p; as before; for all others, take the weighted average ovezdtimated Bethe pseudomarginals on
each sub-model using weightts- p; andp; for sub-models withX; = 0 and X; = 1 respectively.

maxW and Mpower are heuristics to try to pick a good variabladvance. Ideally, we would like
to break heavy cycles, but searching for these is NP-hard\Whia a simpleO(|£]) method which
picks a variableX; with max;cy Zje/\/(i) |W;;|, and can be seen to perform well (Liu et al., 2012
proposed the same maxW approach for inference in Gaussidrls)o One way in which maxwW
can make a poor selection is to choose a variable at the cefrdréarge star configuration but far
from any cycle. Mpower attempts to avoid this by considethgconvergent series of powers of a
modifiedW matrix, but on the examples shown, this did not perform sicantly better. Seg8.1

in the Appendix for more details on Mpower and further exmpemtal results.

FW provides no runtime guarantee when optimizing over a cmmex surface such as the Bethe
free energy, but across all parameters, the average codchbiméimes on the two clamped sub-
models was the same order of magnitude as that for the ofrigiodel, see Figurig] 5.

6 Discussion

The results offd immediately also apply to any binary pairwise model whemubset of vari-
ables may be flipped to yield an attractive model, i.e. whieetbpology has no frustrated cycle
(Weller et al., 20114), and also to any model that may be retltcen attractive binary pairwise
model (Schlesinger and Flach, 2006; Zivny etlal., 2009). thar class, together with the lower
bound off3, we have sandwiched the rangesf (equivalently, giveriZ g, we have sandwiched the
range of the true partition functiafi) and bounded its error; further, clamping any variableyisg|
for optimumlog Z on sub-models and summing is guaranteed to be more accuaatsdlving on
the original model. In some cases, it may also be fastergiddgome algorithms such as LBP may
fail on the original model but perform well on clamped subémais.

Methods presented may prove useful for analyzing genemi-gttractive) models, or for other
applications. As one example, it is known that the Bethe émergy is convex for a MRF whose
topology has at most one cycle (Pakzad and Anantharam| 2002)nalyzing the Hessian of the
Bethe free energy, we are able to leverage this to show tlefiolg result, which may be useful for
optimization (proof in Appendix; this result was conje@diby N. Ruozzi).

Lemma 11. In a binary pairwise MRF (attractive or repulsive edges, amgology), for any subset
of variablesS C V whose induced topology contains at most one cycle, the Bethenergy (using
optimum pairwise marginals) ovét, holding variables’\ S at fixed singleton marginals, is convex.

In §5, clamping appears to be very helpful, especially for ativa models with low singleton poten-
tials where results are excellent (overcoming TRW's adsg@iin this context), but also for general
models, particularly with the simple maxW selection heigisWe can observe some decline in
benefit ag: grows but this is not surprising when clamping just a singlgable. Note, however,
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Figure 5:Left: Average ratio of combined sub-model runtimes to erairuntime (using maxWw, other choices
are similar). Right: Example model whetkamping any variable worseritbe Bethe approximation fog Z.

that non-attractive models exist such that clamping andnsimgp overany variablecan lead to a
worseBethe approximation dbg 7, see Figur€8c for a simple example on four variables.

It will be interesting to explore the extent to which our riisumay be generalized beyond binary
pairwise models. Further, it is tempting to speculate tiailar results may be found for other
approximations. For example, some methods that upper bihermhrtition function, such as TRW,
might always yield a lower (hence better) approximation wheariable is clamped.
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APPENDIX: SUPPLEMENTARY MATERIAL FOR
CLAMPING VARIABLES AND APPROXIMATE INFERENCE

In this Appendix, we provide:

o Figure[6 showing examples of thfg(x) function introduced in Lemnid 6;

e In Section[Y, theoretical results on the Hessian leadingréofp of TheoreniI8 and (a
stronger version of) Theorelm 9 frofd.1, and LemmB1 frorijg;, and

¢ In Sectior[ B, additional illustrative experimental reswlith details on the Mpower selec-
tion heuristic.

8
—c=0
---c=1
6 c=2
) N
0 0.5 1

X

Figure 6:Plots of upper boung.(z) againstz for various values o

7 The Hessian and Proofs of Earlier Results

In this Section, we first discuss properties of the Hessiaiidl, then use these #v.2 to prove
Theorem$B and] 9, and Lemial 11. Define ititerior to be all pointsg € (0,1)". Recall that
r*(x) = (r{(ai), 7 1(q), i1 (@), - - -, 7 (gi)) with corresponding pairwise terng;; }, is an
arg max of G(q) = —F(q) whereg; is held fixed at a particular value. For notational convecéegn
definer! = g;.

7.1 Properties of the Hessian

From (Weller and Jebara, 2013), we have all terms of the HessatrixH ;;, = a?j—aqu:
La Sk if (k) € & dj — 1 1-
ij:{o To " (j.’k> g’ Hjjz—ﬁjL ) M’ (5)
| (.]7 )¢ q] QJ kGN(j) Jk

whered; = [N (j)] is the degree of, and T}, = g;qr(1 — ¢;)(1 — qx) — (& — qjqx)? > 0, with
equality only at an edge (i.ey; or g € {0,1}). For an attractive edgg, k), in the interior, as
shown in(Weller and Jebara, 2013, Lemma 14 in Supplem&nt); ¢;q;x > 0 and henced;, < 0.

Now write

(6)

1 ar(1 — qx) 1
Hj; = :

— _l’_ —
(1 —a) 5 ( T q;(1 — q5)

Consider the term in large parentheses for séme AN (j). First observe that the term is 0,
strictly > 0 in the interior, whether the edge is attractive or repulsiiaceH;; > 0, on the surface

g_;: = 0, we have
Br;f _ Hyy, Ko
6r,’; Hjj r*7

which also holds fok = i where we define; = g;.
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Further, we may incorporate the term foto obtain

1 1— 1 1-—
Hy > n ax(l—ar) _ @ qk)’
q;(1 —q;) Tk q;(1 —q;) Tji

with equality iff j has no neighbor other than(again allowingt = 7), in which case,

or’ R i
J _ >dk ik (8)

or, ~ ri(l-1p)

We also show the following results, though the remaindehisf$ectiorf{7.1 is not used until later
when we prove Theoreii 9 §7.2.1.

Considering the term in large parentheses frioin (6), usiegléfinition ofT’;, we may write

ar(1—q) 1 ) 7 (§,jk - qm) (§,jk — Q,ij) o
( Tjk a(1—q5)) Tk g(1—q)) Hjk B ©)

where we defing; . = M , which as mentioned in the main paper after Thedrem 8, islequa

q;(1—q;)
t % called in finance the beta df;, with respect taX;. This is clearly positive for an

attractive edge. We next show that the rangg,of;, is bounded, as would be expected for beta.
Lemma 12. In the interior, for an edgé€j, k): if attractive,0 < 8, < =1—eWir < 1;

(o7 k+1
if repulsive, -1 < eWix — 1 = aj;, < Bjur < 0. In either case,B; x| =
1—e Wikl < 1.

§ik —qj 4k

<
q;(1—aq;)

Proof. This follows from (Weller and Jebara, 2013, Lemma 6) and tressponding flipped result
(Weller and Jebara, 2014, Lemma 10 in Supplement; consi#r ef the 2 cases far;;, therein).
O

Defines; ., = Bj-«|,.. Regardingl(B), note that; ,, > a’”k with equality iff NV'(k) = {;}. This
notation will become clear when we use it§i.2.1 to prove Theorelﬁ 9.

7.2 Derivation of earlier results

Using the results of7.1, we first provide a general Theorem from which Lenima 1tbfied as an
immediate corollary.

Theorem 13. For any binary pairwise MRF where the Bethe free energy isvernadding fur-
ther variables to the model and holding them at fixed singl@barginal values (optimum pairwise
marginals are computed using the formula of Welling and P€101), leaves the Bethe free energy
over the original variables convex.

Proof. The Bethe free energy is convex the Hessian is everywhere positive semi-definite. When
new variables are added to the system, consideling (5)[@nthéonly effect on the sub-Hessian
restricted to the original variables is potentially to isase the diagonal terns;; for any original
variablej which is adjacent to a new variable. By Weyl's inequalityistban only increase the
minimum eigenvalue of the sub-Hessian, and the resultfsllo O

Since the Bethe free energy is convex for any model whoseeetaipology contains at most one
cycle (Pakzad and Anantharam, 2002), Lenima 11 follows.

We next turn to Theorei 8, then use this to prove a strongsiorenf Theorem19. Keep in mind
that, as shown in_(Weller and Jebara, 2013), each statign@int lies in an open region in the
interiorq € (0,1)™. Further, as discussed .1, we assume that at aayg max pointr*(g;), the
reduced Hessiail\; is non-singular. Hence, writin@n_l}‘] for the (n — 1)-vector of partial

denvatlvesaf ()

Vj # 14, there is an open region around afay, r*(¢;)) where the function
qi

n_l}‘\q = 0 may be well approximated by an invertible linear functioliowaing us to solve

11



(as in the |mpI|C|t funcuon theorem) for the total denwm:; as the unique solutions to the

B (97“ dry;
linear systemT = W + Dkg{ig) o dar

1]—"\ = 0. In addition, sincef\; is real, symmetric, positive definite, with all main diagbna

qi
> 0 and all off-diagonak 0, it is an M-matrix (indeed a Stieltjes matrix), which we dhade in
g7.2.1. We assume these points for the rest of this Section.

Vj # i, where herea— always means on the surface

Notation: LetD; = %, ando;, = g—:j; S0D; = 3 ¢1i iy OikDr + 05i Vj # i. For notational
convenience, defing® = ¢; and takeD; = 1. Let[n] = {1,...,n} and[n] \ i = {1,...,n}\ {i}.
Note thato;;, = g—:é < B;_,; (equality iff j has no neighbor other thd), as defined above. We
shall write Hessian terms such By, to meant | . where this is implied by the context.

We first need the following Lemma.

Lemma 14. Consider a MRF with variables, where then one more variabtg,, ; is added with
singleton marginat;, |, adjacent to exactly one of the originalvariables, sayX, with a € [n]

(note we allow: = i), then: Dy, . .., D,, are unaffected, and,,, ; = %D

Proof. We have the linear systef; = Zkgz{i,j} 0k Dy + 05 Vj € [n] \ i. WhenX,,;, is added,

this yields a new equation fab,, 1, which as shown in{8), i©, 1 = %Da, and
the only other equation that changes is the onel¥gr where we Writeajl and o/, for the new
coefficients. Hence, it is sufficient to show that the ead®utions forD+, ..., D, sat|sfy the new

equation forDg, i.e. if Do = 37 1)\ (5.0} Oar Dk + Ogi-

Observe from[([7) thad!, = OuxHao/H,, Vk € [n], whereH,, incorporates the neuX,,
variable. Hence,

Hllll
> 0yDi+0, = 7 > OakDk + i | + 0, i1 D
k€n+1]\{i,a} 4% \ke¢{ij}

Haa ga n+1 = Ta :H—l 6; n+1 T;T:+1 .

=—D, : D, b , and just above
Dot T L (=) y @), (8) and ju \

. \2

_ Da H. + (ga,n-ﬁ-l - Tarn-i—l)
H!, o Toms17ri(1—1%)
D, i (l—1rk) 1 —_

= H,, ntl URSTANE definition of 7, ,,
H, |: * ( Ton+1 7’;(1 - TZ) (definit 7 +1)
D /

= H, [Haa + (H - Haa)] = Da O

Theoreni B may now be proved by induction|ohy|. The base cag€’;| = 1 follows from (8). The
inductive step follows from Lemnfa]l4 by considering a leaf.

7.2.1 Proof of (stronger version of) Theorenh9:

As above, we have the linear system given by the followingaéiqas:

D, = Z Ojk Dy + 0ji Vj #1i & =05 = Z[ayk — 6] D (10)
ke{i.g} ki
. orx Hjp orx Hj; 1 j=k
with Ojk B HJJ k ¢ {Z ]} 0;; =0, 0ji D0 Hjj, 05k {O Ak
Hence we may rewrité (10), multiplying by H ;, to give the equivalent system
> HjDy=—Hji Vj#i (11)
k#1
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Note equation[{11) makes intuitive sense: for each varidhlewe haveF; = 0 at a stationary
point, then taking the total derivative with respecyi@ivesH;; + Zk# H;iDy, = 0.

By Theorem[8, we have the complete solution vediyr Vk # i provided the topology is
acyclic. In this setting, we rewrite the result of Theorgis8ng the 3* notation from above:
Dy, = [1(s—1)ep(ir) Bomst» Where here?(i ~ k) is theuniquepath fromi to k.

For a general graph, there may be many paths friamk. LetII(: ~ k) be the set of all such
directed paths. For any", for any particular pattP(i ~ k) € II(i ~ k), define itsweightto be
WI[P(i ~ k)] = H(S_)t)ep(iwk) Bx_,;. We shall prove the following result:

Dy > WIP(i ~ k). 12
k—p(iwzi?fﬂ((iwk) [ (ZW )] ( )

Note this is clearly stronger than Theorem 9 sigec N (¢), the path going directly — j is one
member oflI(i ~~ j), though in general there may be many others.

For any particular*, let G’ be the weighted directed graph formed from the topology efNtRF
by replacing each undirected edge- ¢ by two directed edges: — ¢ with weightg?_,, andt — s
with weight3;_, .. Note that in an attractive model, &@f_,, € (0,1), see LemmA12.

It is a simple application of Dijkstra’s algorithm to constt fromG’ a tree of all maximum weight
directed paths fromto each vertey # i, which we call7[§ (For our purpose we just need to know
that such a tre@ exists.)

We want to solve[(T1), which we write d$,,D = —H;, where we want to solve fab, which is
the vector ofDy, Vk # i, and H; is theith column of H without itsith element. LetH\TZ. be the
reduced Hessian for the model @h(which is missing some edges), afif be theith column of
the Hessian for the model oh without itsith element. In the sub-model with only the edge§of
by construction and Theordm B, = maxp(;k)ern(i-k) WP ~ k)|. Hence, itis sufficient to
show that adding the extra edges frgmo G cannot decrease aiy,. This forms the remainder of
the proof, where we shall require the following nonsingilematrix property offf\ ;. its inverse is
elementwise non-negative (Fan, 1958, Theorem 5).

Let A = Hy; — HJ, (this accounts for edges ifi(G) \ E(T) not incident toi), n = H; — H
(this accounts for edges i(G) \ E(T) incidenttoi) ands = D — D7 . We must show that > 0
elementwise. We havll[;,D7 = —H/ andH\;D = —Hj;, henceH/ D7 —1n = —H] — 1 =
—H; = H\;D = (H], + A)(D7 +4), hence—n = (H/, + A)d + ADT & § = (H;) "' (=1 —
ADT). Thus, itis sufficient to show that tffe — 1) vector—n— AD7 is elementwise non-negative.

Recall [5) and(9)—n — AD7 may be written as the sum ef;, — A, D7, with oner, andA, for
each edge = (s,t) in E(G) \ E(T). For each such edgg we have 2 cases:

Case 1; ¢ {s,t}: n. = 0; A, has only 4 non-zero elements, at locatigsss), (s, ), (¢, s), (¢, t).
Showing only these elements,

S t s t
A, = f (_Hﬁﬂs—% HHSﬁt* > = —Hstf ( S—1>t ﬁ:1 ),Where—Hst > 0 for an attractive edge
st —stPiss - t—s

Hence,—n. — A.D7 is 0 everwhere except elemenwhichis—H, (D] — D7 8¢ ,,), and element
t which is—H,, (D] — D] B}, ,). Observe that both expressions aré by construction off” (for
example, considering the first bracketed term, observeliffats the maximum weight of a path
fromi tot, whereasD! 3 ., is the weight of a path togoing throughs).

Case 2,i € {s,t}: WLOG suppose the edge {$,s). —. is zero everywhere except element
which is — H;, (positive). A, has just one non-zero element(ats) which is —H,;8%_,,. Hence,
—n. — A.D7 is 0 everwhere except elemenvhich is — H;,(1 — D7 5%, .) > 0 by LemmdP.

5=

This completes the proof.

®We want the max of the prod of edge weightsmax of the log of the prod of edge weights max of the
sum of the log of edge weights (all negative) min of the sum of - log of the edge weights (all positive); so
really we construct the usual shortest directed paths s@gu log of the edge weights, which are all positive.
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maxW is likely to choosers since it has the
highest degree, but, is typically a better
choice since it lies on cycles. Mpower can rec-
ognize this and make a better choice.

J/

8 Additional Experiments

All of the experiments reported ifbl were also run at other settings. In particular, the eandisults
show the poor performance of the standard Bethe approxamatiestimating singleton marginals
for attractive models with low singleton potentials, andigate how clamping repairs this. Here, in
Figure$ -9, we show results for the same topologies usimbitiher singleton potentials,, ., = 2
for attractive models, and also show results with low sitayiepotentialsl;,, ., = 0.1 for general
(non-attractive) models.

Note that in some examples of attractive models, when thestamp’ variable was clamped, the
resulting Bethe approximation tog Z appears to worsen (see Figliré 9a), which seems to conflict
with Theoreni b. The explanation is that in these examplesk=Wolfe is failing to find the global
Bethe optimum, as was confirmed by spot checking.

Next we show results for a particular fixed topology we callaartp’, see Figur&10, which illus-
trates how maxW can sometimes select a poor variable to cls¥agexplain the Mpower selection
heuristic and demonstrate that it performs much better isridpology.
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8.1 Mpower heuristic

We would like an efficient way to select a variable to clampahkties on many heavy simple cycles.
One problem is how to define heavy. Even with a good definiitds,still NP-hard to search over
all simple cycles. The idea for Mpower is as follows: assigeteedgeg(i, j) a weight based on
|W;;| and create a matri&/ of these weights. I}/ is raised to thésith power, then théth diagonal
element inM* is the sum over all paths of lengkhfrom i to i of the product of the edge weights
along the path. Ideally, we might consider the spifi” , M* and use the diagonal elements to rank
the vertices, choosing the one with highest total scorealteg (12), it is sensible to assign edge
weights)M;; based on possible; , ; values. Given Lemmal2, a first idea is to dse e~ Wisl,
However, we'd like to be sure that the matrix serje§- , M* is convergent, allowing it to be
computed as/ — M)~ — I (since we shall be interested only in ranking the diagomaisein fact
there is no need to subtrakat the end). Thus, we need the spectral radiud) < 1. A sufficient
condition is that all row sums are 1. Since each termh — e~/"iil < 1 and there at most — 1
such elements in any row, our first heuristic was toldgt = — (1 — e~I"isl). We then made two
adjustments.

First, note that the seriés -, M* overcounts all cycles, though at an exponentially decasstey

It is hard to repair this. However, it also includes reldivkigh value terms coming from paths
from i to any neighboy and straight back again, along with all powers of these. Vrilshlike

to discard all of these, hence from eath diagonal term of I — M)~!, we subtract; /(1 — s;),
wheres; is theith diagonal term of\/2. This is very similar to the final version we used, and gives
only very marginally worse results on the examples we careidl

For our final version, we observe thiat- e ~!"iil decays rapidly, anet tanh . Given the form

of the loop series expansion for a single cycle, which costainh % terms (Weller et all, 2014,
Lemma 5), we tried instead using;; = ﬁ tanh % and it is for this heuristic that results
are shown in Figures11 (fdf,,.. = 2) and12 (forT},.. = 0.1). Observe that for this topol-
ogy, Mpower performs close to optimally (almost the samaltess for best Clamp), significantly
outperforming maxW in most settings. Note, however, thahmexperiments on random graphs
reported indg, Mpower did not outperform the simpler maxW heuristic. uituire work, we hope to
improve the selection methods.

[Wij
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