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Abstract

It was recently proved using graph covers (Ruozzi, 2012) that the Bethe partition
function is upper bounded by the true partition function fora binary pairwise
model that is attractive. Here we provide a new, arguably simpler proof from
first principles. We make use of the idea of clamping a variable to a particular
value. For an attractive model, we show that summing over theBethe partition
functions for each sub-model obtained after clamping any variable can only raise
(and hence improve) the approximation. In fact, we derive a stronger result that
may have other useful implications. Repeatedly clamping until we obtain a model
with no cycles, where the Bethe approximation is exact, yields the result. We also
provide a related lower bound on a broad class of approximatepartition functions
of general pairwise multi-label models that depends only onthe topology. We
demonstrate that clamping a few wisely chosen variables canbe of practical value
by dramatically reducing approximation error.

1 Introduction

Marginal inference and estimating the partition function for undirected graphical models, also
called Markov random fields (MRFs), are fundamental problems in machine learning. Exact
solutions may be obtained via variable elimination or the junction tree method, but unless the
treewidth is bounded, this can take exponential time (Pearl, 1988; Lauritzen and Spiegelhalter, 1988;
Wainwright and Jordan, 2008). Hence, many approximate methods have been developed.

Of particular note is the Bethe approximation, which is widely used via theloopy belief propagation
algorithm (LBP). Though this is typically fast and results are often accurate, in general it may con-
verge only to a local optimum of the Bethe free energy, or may not converge at all (McEliece et al.,
1998; Murphy et al., 1999). Another drawback is that, until recently, there were no guarantees
on whether the returned approximation to the partition function was higher or lower than the true
value. Both aspects are in contrast to methods such as thetree-reweightedapproximation (TRW,
Wainwright et al., 2005), which features a convex free energy and is guaranteed to return an upper
bound on the true partition function. Nevertheless, empirically, LBP or convergent implementations
of the Bethe approximation often outperform other methods (Meshi et al., 2009; Weller et al., 2014).

Using the method of graph covers (Vontobel, 2013), Ruozzi (2012) recently proved that the optimum
Bethe partition function provides a lower bound for the truevalue, i.e.ZB ≤ Z, for discrete binary
MRFs with submodular log potential cost functions of any arity. Here we provide an alternative
proof for attractive binary pairwise models. Our proof doesnot rely on any methods of loop series
(Sudderth et al., 2007) or graph covers, but rather builds onfundamental properties of the derivatives
of the Bethe free energy. Our approach applies only to binarymodels (whereas Ruozzi, 2012 applies
to any arity), but we obtain stronger results for this class,from whichZB ≤ Z easily follows. We
use the idea ofclampinga variable and considering the approximate sub-partition functions over the
remaining variables, as the clamped variable takes each of its possible values.

Notation and preliminaries are presented in§2. In §3, we derive a lower bound, not just for the
standard Bethe partition function, but for a range of approximate partition functions over multi-label
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variables that may be defined from a variational perspectiveas an optimization problem, based only
on the topology of the model. In§4, we consider the Bethe approximation for attractive binary pair-
wise models. We show that clamping any variable and summing the Bethe sub-partition functions
over the remaining variables can only increase (hence improve) the approximation. Together with a
similar argument to that used in§3, this proves thatZB ≤ Z for this class of model. To derive the
result, we analyze how the optimum of the Bethe free energy varies as the singleton marginal of one
particular variable is fixed to different values in[0, 1]. Remarkably, we show that the negative of this
optimum, less the singleton entropy of the variable, is a convex function of the singleton marginal.
This may have further interesting implications. We presentexperiments in§5, demonstrating that
clamping even a single variable selected using a simple heuristic can be very beneficial.

1.1 Related work

Branching or conditioning on a variable (or set of variables) and approximating over the remaining
variables has a fruitful history in algorithms such as branch-and-cut (Padberg and Rinaldi, 1991;
Mitchell, 2002), work on resolution versus search (Rish andDechter, 2000) and various approaches
of (Darwiche, 2009, Chapter 8). Cutset conditioning was discussed by Pearl (1988) and refined
by Peot and Shachter (1991) as a method to render the remaining topology acyclic in preparation
for belief propagation. Eaton and Ghahramani (2009) developed this further, introducing thecondi-
tioned belief propagationalgorithm together withback-belief-propagationas a way to help identify
which variables to clamp. Liu et al. (2012) discussed feedback message passing for inference in
Gaussian (not discrete) models, deriving strong results for the particular class of attractive mod-
els. Choi and Darwiche (2008) examined methods to approximate the partition function by deleting
edges.

2 Preliminaries

We consider a pairwise model withn variablesX1, . . . , Xn and graph topology(V , E): V contains
nodes{1, . . . , n} wherei corresponds toXi, andE ⊆ V × V contains an edge for each pairwise
relationship. We sometimes consider multi-label models where each variableXi takes values in
{0, . . . , Li − 1}, and sometimes restrict attention to binary models whereXi ∈ B = {0, 1} ∀i.
Let x = (x1, . . . , xn) be a configuration of all the variables, andN (i) be the neighbors ofi. For
all analysis of binary models, to be consistent with Wellingand Teh (2001) and Weller and Jebara

(2013), we assume a reparameterization such thatp(x) = e−E(x)

Z , where the energy of a configura-
tion,E = −

∑

i∈V θixi −
∑

(i,j)∈E Wijxixj , with singleton potentialsθi and edge weightsWij .

2.1 Clamping a variable and related definitions

We shall find it useful to examine sub-partition functions obtained byclampingone particular vari-
ableXi, that is we consider the model on then−1 variablesX1, . . . , Xi−1, Xi+1, . . . , Xn obtained
by settingXi equal to one of its possible values.

LetZ|Xi=a be the sub-partition function on the model obtained by settingXi = a, a ∈ {0, . . . , Li−
1}. Observe that true partition functions and marginals are self-consistent in the following sense:

Z =

Li−1
∑

j=0

Z|Xi=j ∀i ∈ V , p(Xi = a) =
Z|Xi=a

∑Li−1
j=0 Z|Xi=j

. (1)

This is not true in general for approximate forms of inference,1 but if the model has no cycles, then
in many cases of interest, (1) does hold, motivating the following definition.

Definition 1. We say an approximation to the log-partition functionZA is ExactOnTreesif it may be
specified by the variational formula− logZA = minq∈Q FA(q) where: (1)Q is some compact space
that includes the marginal polytope; (2)FA is a function of the (pseudo-)distributionq (typically a
free energy approximation); and (3) For any model, whenevera subset of variablesV ′ ⊆ V is
clamped to particular valuesP = {pi ∈ {0, . . . , Li − 1}, ∀Xi ∈ V ′}, i.e. ∀Xi ∈ V ′, we constrain

1For example, consider a single cycle with positive edge weights. This hasZB < Z (Weller et al., 2014),
yet after clamping any variable, each resulting sub-model is a tree hence the Bethe approximation is exact.
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Xi = pi, which we write asV ′ ← P , and the remaining induced graph onV \V ′ is acyclic, then the
approximation is exact, i.e.ZA|V′←P = Z|V′←P . Similarly, define an approximation to be in the
broader class ofNotSmallerOnTreesif it satisfies all of the above properties except that condition
(3) is relaxed toZA|V′←P ≥ Z|V′←P . Note that the Bethe approximation is ExactOnTrees, and
approximations such as TRW are NotSmallerOnTrees, in both cases whether using the marginal
polytope or any relaxation thereof, such as the cycle or local polytope (Weller et al., 2014).

We shall derive bounds onZA with the following idea: Obtain upper or lower bounds on the approx-
imation achieved by clamping and summing over the approximate sub-partition functions; Repeat
until an acyclic graph is reached, where the approximation is either exact or bounded. We introduce
the following related concept from graph theory.

Definition 2. A feedback vertex set(FVS) of a graph is a set of vertices whose removal leaves a
graph without cycles. Determining if there exists a feedback vertex set of a given size is a classi-
cal NP-hard problem (Karp, 1972). There is a significant literature on determining the minimum
cardinality of an FVS of a graphG, which we write asν(G). Further, if vertices are assigned non-
negative weights, then a natural problem is to find an FVS withminimum weight, which we write as
νw(G). An FVS with a factor 2 approximation toνw(G) may be found in timeO(|V|+ |E| log |E|)
(Bafna et al., 1999). For pairwise multi-label MRFs, we may create a weighted graph from the
topology by assigning each nodei a weight oflogLi, and then compute the correspondingνw(G).

3 Lower Bound on Approximate Partition Functions

We obtain a lower bound on any approximation that is NotSmallerOnTrees by observing thatZA ≥
ZA|Xn=j ∀j from the definition (the sub-partition functions optimize over a subset).

Theorem 3. If a pairwise MRF has topology with an FVS of sizen and corresponding values
L1, . . . , Ln, then for any approximation that is NotSmallerOnTrees,ZA ≥

Z∏
n
i=1 Li

.

Proof. We proceed by induction onn. The base casen = 0 holds by the assumption thatZA

is NotSmallerOnTrees. Now assume the result holds forn − 1 and consider a MRF which re-
quiresn vertices to be deleted to become acyclic. Clamp variableXn at each of itsLn values
to create the approximationZ(n)

A :=
∑Ln−1

j=0 ZA|Xn=j . By the definition of NotSmallerOnTrees,

ZA ≥ ZA|Xn=j ∀j; and by the inductive hypothesis,ZA|Xn=j ≥
Z|Xn=j
∏n−1

i=1 Li

.

Hence,LnZA ≥ Z
(n)
A =

∑Ln−1
j=0 ZA|Xn=j ≥

1∏n−1
i=1 Li

∑Ln−1
j=0 Z|Xn=j =

Z∏n−1
i=1 Li

.

By considering an FVS with minimum
∏n

i=1 Li, Theorem 3 is equivalent to the following result.

Theorem 4. For any approximation that is NotSmallerOnTrees,ZA ≥ Ze−νw .

This bound applies to general multi-label models with any pairwise and singleton potentials (no
need for attractive). The bound is trivial for a tree, but already for a binary model with one cycle we
obtain thatZB ≥ Z/2 for any potentials, even over the marginal polytope. The bound is tight, at
least for uniformLi = L ∀i.2 The bound depends only on the vertices that must be deleted toyield
a graph with no cycles, not on the number of cycles (which clearly upper boundsν(G)). For binary
models, exact inference takes timeΘ((|V| − |ν(G)|)2ν(G)).

4 Attractive Binary Pairwise Models

In this Section, we restrict attention to the standard Betheapproximation. We shall use results
derived in (Welling and Teh, 2001) and (Weller and Jebara, 2013), and adopt similar notation. The
Bethe partition function,ZB, is defined as in Definition 1, whereQ is set as thelocal polytope
relaxation andFA is the Bethe free energy, given byF(q) = Eq(E)−SB(q), whereE is the energy

2For example, in the binary case: consider a sub-MRF on a cyclewith no singleton potentials and uniform,
very high edge weights. This can be shown to haveZB ≈ Z/2 (Weller et al., 2014). Now connectν of these
together in a chain using very weak edges (this constructionis due to N. Ruozzi).
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andSB is the Bethe pairwise entropy approximation (see Wainwright and Jordan, 2008 for details).
We consider attractive binary pairwise models and apply similar clamping ideas to those used in§3.
In §4.1 we show that clamping can never decrease the approximateBethe partition function, then
use this result in§4.2 to prove thatZB ≤ Z for this class of model. In deriving the clamping result
of §4.1, in Theorem 7 we show an interesting, stronger result on how the optimum Bethe free energy
changes as the singleton marginalqi is varied over[0, 1].

4.1 Clamping a variable can only increase the Bethe partition function

LetZB be the Bethe partition function for the original model. Clamp variableXi and form the new
approximationZ(i)

B =
∑1

j=0 ZB|Xi=j . In this Section, we shall prove the following Theorem.

Theorem 5. For an attractive binary pairwise model and any variableXi, Z
(i)
B ≥ ZB.

We first introduce notation and derive preliminary results,which build to Theorem 7, our strongest
result, from which Theorem 5 easily follows. Letq = (q1, . . . , qn) be a location inn-dimensional
pseudomarginal space, i.e.qi is the singleton pseudomarginalq(Xi = 1) in the local polytope. Let
F(q) be the Bethe free energy computed atq using Bethe optimum pairwise pseudomarginals given
by the formula forq(Xi = 1, Xj = 1) = ξij(qi, qj ,Wij) in (Welling and Teh, 2001), i.e. for an
attractive model, for edge(i, j), ξij is the lower root of

αijξ
2
ij − [1 + αij(qi + qj)]ξij + (1 + αij)qiqj = 0, (2)

whereαij = eWij − 1, andWij > 0 is the strength (associativity) of the log-potential edge weight.

Let G(q) = −F(q). Note thatlogZB = maxq∈[0,1]n G(q). For anyx ∈ [0, 1], consider the
optimum constrained by holdingqi = x fixed, i.e. letlogZBi(x) = maxq∈[0,1]n:qi=x G(q). Let
r∗(x) = (r∗1(x), . . . , r

∗
i−1(x), r

∗
i+1(x), . . . , r

∗
n(x)) with corresponding pairwise terms{ξ∗ij}, be an

argmax for where this optimum occurs. Observe thatlogZBi(0) = logZB|Xi=0, logZBi(1) =
logZB|Xi=1 andlogZB = logZBi(q

∗
i ) = maxq∈[0,1]n G(q), whereq∗i is a location ofXi at which

the global optimum is achieved.

To prove Theorem 5, we need a sufficiently good upper bound onlogZBi(q
∗
i ) compared to

logZBi(0) and logZBi(1). First we demonstrate what such a bound could be, then prove that
this holds. LetSi(x) = −x log x− (1− x) log(1− x) be the standard singleton entropy.

Lemma 6(Demonstrating what would be a sufficiently good upper boundon logZB). If ∃x ∈ [0, 1]
such thatlogZB ≤ x logZBi(1) + (1 − x) logZBi(0) + Si(x), then:
(i) ZBi(0) + ZBi(1)− ZB ≥ emfc(x) wherefc(x) = 1 + ec − exc+Si(x),
m = min(logZBi(0), logZBi(1)) andc = | logZBi(1)− logZBi(0)|; and
(ii) ∀x ∈ [0, 1], fc(x) ≥ 0 with equality iffx = σ(c) = 1/(1 + exp(−c)), the sigmoid function.

Proof. (i) This follows easily from the assumption. (ii) This is easily checked by differentiating. It
is also given in (Koller and Friedman, 2009, Proposition 11.8).

See Figure 6 in the Supplement for example plots of the functionfc(x). Lemma 6 motivates us to
consider if perhapslogZBi(x) might be upper bounded byx logZBi(1)+(1−x) logZBi(0)+Si(x),
i.e. the linear interpolation betweenlogZBi(0) and logZBi(1), plus the singleton entropy term
Si(x). It is easily seen that this would be true ifr∗(qi) were constant. In fact, we shall show that
r∗(qi) varies in a particular way which yields the following, stronger result, which, together with
Lemma 6, will prove Theorem 5.

Theorem 7. LetAi(qi) = logZBi(qi)− Si(qi). For an attractive binary pairwise model,Ai(qi) is
a convex function.

Proof. We outline the main points of the proof. Observe thatAi(x) = maxq∈[0,1]n:qi=x G(q) −
Si(x), whereG(q) = −F(q). Note that there may be multipleargmax locationsr∗(x). As shown
in (Weller and Jebara, 2013),F is at least thrice differentiable in(0, 1)n and all stationary points lie
in the interior(0, 1)n. Given our conditions, the ‘envelope theorem’ of (Milgrom,1999, Theorem
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Figure 1:3d plots ofvij = Q−1
ij , usingξij(qi, qj ,W ) from (Welling and Teh, 2001).

1) applies, showing thatAi is continuous in[0, 1] with right derivative3

A′i+(x) = max
r∗(qi=x)

∂

∂x
[G(qi = x, r∗(x)) − Si(x)] = max

r∗(qi=x)

∂

∂x
[G(qi = x, r∗(x))] −

dSi(x)

dx
.

(3)
We shall show that this is non-decreasing, which is sufficient to show the convexity result of Theorem
7. To evaluate the right hand side of (3), we use the derivative shown by Welling and Teh (2001):

∂F

∂qi
= −θi + logQi,

where logQi = log
(1 − qi)

di−1

qdi−1
i

∏

j∈N (i)(qi − ξij)
∏

j∈N (i)(1 + ξij − qi − qj)
(as in Weller and Jebara, 2013)

= log
qi

1− qi
+ log

∏

j∈N (i)

Qij , here definingQij =

(

qi − ξij
1 + ξij − qi − qj

)(

1− qi
qi

)

.

A key observation is that thelog qi
1−qi

term is exactly− dSi(qi)
dqi

, and thus cancels the− dSi(x)
dx term

at the end of (3). Hence,A′i+(qi) = maxr∗(qi)

[

−
∑

j∈N (i) logQij(qi, r
∗
j , ξ
∗
ij)

]

. 4

It remains to show that this expression is non-decreasing with qi. We shall show something stronger,
that at everyargmax r∗(qi), and for allj ∈ N (i),− logQij is non-decreasing⇔ vij = Q−1ij is non-
decreasing. The result then follows since themax of non-decreasing functions is non-decreasing.

See Figure 1 for example plots of thevij function, and observe thatvij appears to decrease with
qi (which is unhelpful here) while it increases withqj . Now, in an attractive model, the Bethe free

energy issubmodular, i.e. ∂2F
∂qi∂qj

≤ 0 (Weller and Jebara, 2013), hence asqi increases,r∗j (qi) can

only increase (Topkis, 1978). For our purpose, we must show that
dr∗j
dqi

is sufficiently large such that
dvij
dqi
≥ 0. This forms the remainder of the proof.

At any particularargmax r∗(qi), writing v = vij [qi, r
∗
j (qi), ξ

∗
ij(qi, r

∗
j (qi))], we have

dv

dqi
=

∂v

∂qi
+

∂v

∂ξij

dξ∗ij
dqi

+
∂v

∂qj

dr∗j
dqi

=
∂v

∂qi
+

∂v

∂ξij

∂ξ∗ij
∂qi

+
dr∗j
dqi

(

∂v

∂ξij

∂ξ∗ij
∂qj

+
∂v

∂qj

)

. (4)

From (Weller and Jebara, 2013),∂ξij∂qi
=

αij(qj−ξij)+qj
1+αij(qi−ξij+qj−ξij)

and similarly, ∂ξij
∂qj

=
αij(qi−ξij)+qi

1+αij(qj−ξij+qi−ξij)
, whereαij = eWij − 1. The other partial derivatives are easily derived:

∂v
∂qi

=
qi(qj−1)(1−qi)+(1+ξij−qi−qj)(qi−ξij)

(1−qi)2(qi−ξij)2
, ∂v
∂ξij

=
qi(1−qj)

(1−qi)(qi−ξij)2
, and ∂v

∂qj
= −qi

(1−qi)(qi−ξij)
.

The only remaining term needed for (4) is
dr∗j
dqi

. The following results are proved in the Appendix,
subject to a technical requirement that at anargmax, the reduced HessianH\i, i.e. the matrix of

3This result is similar to Danskin’s theorem (Bertsekas, 1995). Intuitively, for multipleargmax locations,
each may increase at a different rate, so here we must take themax of the derivatives over all theargmax.

4We remark thatQij is the ratio
(

p(Xi=1,Xj=0)

p(Xi=0,Xj=0)

)/(

p(Xi=1)
p(Xi=0)

)

=
p(Xj=0|Xi=1)

p(Xj=0|Xi=0)
.
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second partial derivatives ofF after removing theith row and column, must be non-singular in
order to have an invertible locally linear function. Call this required propertyP . By nature, each
H\i is positive semi-definite. If needed, a small perturbation argument allows us to assume that no
eigenvalue is 0, then in the limit as the perturbation tends to 0, Theorem 7 holds since the limit of
convex functions is convex. Let[n] = {1, . . . , n} andG be the topology of the MRF.

Theorem 8. For anyk ∈ [n] \ i, letCk be the connected component ofG \ i that containsXk. If

Ck + i is a tree, thendr
∗

k

dqi
=

∏

(s→t)∈P (i k)
ξ∗st−r

∗

sr
∗

t

r∗s (1−r
∗

s )
,whereP (i k) is the unique path fromi to

k in Ck + i, and for notational convenience, definer∗i = qi. Proof in Appendix (subject toP).

In fact, this result applies for any combination of attractive and repulsive edges. The result is re-
markable, yet also intuitive. In the numerator,ξst− qsqt = Covq(Xs, Xt), increasing withWij and
equal to 0 atWij = 0 (Weller and Jebara, 2013), and in the denominator,qs(1 − qs) = Varq(Xs),
hence the ratio is exactly what is called in finance the beta ofXt with respect toXs.5

In particular, Theorem 8 shows that for anyj ∈ N (i) whose component is a tree,
dr∗j
dqi

=
ξ∗ij−qir

∗

j

qi(1−qi)
.

The next result shows that in an attractive model, additional edges can only reinforce this sensitivity.

Theorem 9. In an attractive model with edge(i, j),
dr∗j (qi)

dqi
≥

ξ∗ij−qir
∗

j

qi(1−qi)
. Proof in Appendix (subject

toP).

Now collecting all terms, substituting into (4), and using (2), after some algebra yields thatdv
dqi
≥ 0,

as required to prove Theorem 7. This now also proves Theorem 5.

4.2 The Bethe partition function lower bounds the true partition function

Theorem 5, together with an argument similar to the proof of Theorem 3, easily yields a new proof
thatZB ≤ Z for an attractive binary pairwise model.

Theorem 10(first proved by Ruozzi, 2012). For an attractive binary pairwise model,ZB ≤ Z.

Proof. We shall use induction onn to show that the following statement holds for alln:
If a MRF may be rendered acyclic by deletingn verticesv1, . . . , vn, thenZB ≤ Z.
The base casen = 0 holds since the Bethe approximation is ExactOnTrees. Now assume the result
holds forn−1 and consider a MRF which requiresn vertices to be deleted to become acyclic. Clamp
variableXn and considerZ(n)

B =
∑1

j=0 ZB|Xn=j . By Theorem 5,ZB ≤ Z
(n)
B ; and by the inductive

hypothesis,ZB|Xn=j ≤ Z|Xn=j ∀j. Hence,ZB ≤
∑1

j=0 ZB|Xn=j ≤
∑1

j=0 Z|Xn=j = Z.

5 Experiments

For an approximation which is ExactOnTrees, it is natural totry clamping a few variables to remove
cycles from the topology. Here we run experiments on binary pairwise models to explore the po-
tential benefit of clamping even just one variable, though the procedure can be repeated. For exact
inference, we used the junction tree algorithm. For approximate inference, we used Frank-Wolfe
(FW) (Frank and Wolfe, 1956): At each iteration, a tangent hyperplane to the approximate free en-
ergy is computed at the current point, then a move is made to the best computed point along the
line to the vertex of the local polytope with the optimum score on the hyperplane. This proceeds
monotonically, even on a non-convex surface, hence will converge (since it is bounded), though
it may be only to a local optimum and runtime is not guaranteed. This method typically produces
good solutions in reasonable time compared to other approaches (Belanger et al., 2013; Weller et al.,
2014) and allows direct comparison to earlier results (Meshi et al., 2009; Weller et al., 2014). To
further facilitate comparison, in this Section we use the same unbiased reparameterization used by
Weller et al. (2014), withE = −

∑

i∈V θixi −
∑

(i,j)∈E
Wij

2 [xixj + (1− xi)(1 − xj)].

5Sudderth et al. (2007) defined a different, symmetricβst =
ξst−qsqt

qs(1−qs)qt(1−qt)
for analyzing loop series. In

our context, we suggest that the ratio defined above may be a better Bethe beta.
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Test models were constructed as follows: Forn variables, singleton potentials were drawnθi ∼
U [−Tmax, Tmax]; edge weights were drawnWij ∼ U [0,Wmax] for attractive models, orWij ∼
U [−Wmax,Wmax] for general models. For models with random edges, we constructed Erdős-Renyi
random graphs (rejecting disconnected samples), where each edge has independent probabilityp of
being present. To observe the effect of increasingn while maintaining approximately the same
average degree, we examinedn = 10, p = 0.5 andn = 50, p = 0.1. We also examined models on
a complete graph topology with 10 variables for comparison with TRW in (Weller et al., 2014). 100
models were generated for each set of parameters with varyingTmax andWmax values.

Results are displayed in Figures 2 to 4 showing average absolute error oflogZB vs logZ and aver-
ageℓ1 error of singleton marginals. The legend indicates the different methods used:Original is FW
on the initial model; then various methods were used to select the variable to clamp, before running
FW on the 2 resulting submodels and combining those results.avg Clampfor logZ means average
over all possible clampings, whereasall Clamp for marginals computes each singleton marginal as
the estimated̂pi = ZB|Xi=1/(ZB|Xi=0 + ZB|Xi=1). best Clampuses the variable which with
hindsight gave the best improvement inlogZ estimate, thereby showing the best possible result for
logZ. Similarly, worst Clamppicks the variable which showed worst performance. Where one
variable is clamped, the respective marginals are computedthus: for the clamped variableXi, use
p̂i as before; for all others, take the weighted average over theestimated Bethe pseudomarginals on
each sub-model using weights1− p̂i andp̂i for sub-models withXi = 0 andXi = 1 respectively.

maxW and Mpower are heuristics to try to pick a good variable in advance. Ideally, we would like
to break heavy cycles, but searching for these is NP-hard. maxW is a simpleO(|E|) method which
picks a variableXi with maxi∈V

∑

j∈N (i) |Wij |, and can be seen to perform well (Liu et al., 2012
proposed the same maxW approach for inference in Gaussian models). One way in which maxW
can make a poor selection is to choose a variable at the centreof a large star configuration but far
from any cycle. Mpower attempts to avoid this by consideringthe convergent series of powers of a
modifiedW matrix, but on the examples shown, this did not perform significantly better. See§8.1
in the Appendix for more details on Mpower and further experimental results.

FW provides no runtime guarantee when optimizing over a non-convex surface such as the Bethe
free energy, but across all parameters, the average combined runtimes on the two clamped sub-
models was the same order of magnitude as that for the original model, see Figure 5.

6 Discussion

The results of§4 immediately also apply to any binary pairwise model where asubset of vari-
ables may be flipped to yield an attractive model, i.e. where the topology has no frustrated cycle
(Weller et al., 2014), and also to any model that may be reduced to an attractive binary pairwise
model (Schlesinger and Flach, 2006; Zivny et al., 2009). Forthis class, together with the lower
bound of§3, we have sandwiched the range ofZB (equivalently, givenZB, we have sandwiched the
range of the true partition functionZ) and bounded its error; further, clamping any variable, solving
for optimumlogZB on sub-models and summing is guaranteed to be more accurate than solving on
the original model. In some cases, it may also be faster; indeed, some algorithms such as LBP may
fail on the original model but perform well on clamped sub-models.

Methods presented may prove useful for analyzing general (non-attractive) models, or for other
applications. As one example, it is known that the Bethe freeenergy is convex for a MRF whose
topology has at most one cycle (Pakzad and Anantharam, 2002). In analyzing the Hessian of the
Bethe free energy, we are able to leverage this to show the following result, which may be useful for
optimization (proof in Appendix; this result was conjectured by N. Ruozzi).

Lemma 11. In a binary pairwise MRF (attractive or repulsive edges, anytopology), for any subset
of variablesS ⊆ V whose induced topology contains at most one cycle, the Bethefree energy (using
optimum pairwise marginals) overS, holding variablesV\S at fixed singleton marginals, is convex.

In §5, clamping appears to be very helpful, especially for attractive models with low singleton poten-
tials where results are excellent (overcoming TRW’s advantage in this context), but also for general
models, particularly with the simple maxW selection heuristic. We can observe some decline in
benefit asn grows but this is not surprising when clamping just a single variable. Note, however,
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Figure 2:Average errors vs true,complete graph onn = 10. TRW in pink . Consistent legend throughout.
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Figure 3:Average errors vs true,random graph onn = 10, p = 0.5. Consistent legend throughout.
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are similar). Right: Example model whereclamping any variable worsensthe Bethe approximation tologZ.

that non-attractive models exist such that clamping and summing overany variablecan lead to a
worseBethe approximation oflogZ, see Figure 5c for a simple example on four variables.

It will be interesting to explore the extent to which our results may be generalized beyond binary
pairwise models. Further, it is tempting to speculate that similar results may be found for other
approximations. For example, some methods that upper boundthe partition function, such as TRW,
might always yield a lower (hence better) approximation when a variable is clamped.
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APPENDIX: SUPPLEMENTARY MATERIAL FOR
CLAMPING VARIABLES AND APPROXIMATE INFERENCE

In this Appendix, we provide:

• Figure 6 showing examples of thefc(x) function introduced in Lemma 6;
• In Section 7, theoretical results on the Hessian leading to proofs of Theorem 8 and (a

stronger version of) Theorem 9 from§4.1, and Lemma 11 from§6; and
• In Section 8, additional illustrative experimental results with details on the Mpower selec-

tion heuristic.
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Figure 6:Plots of upper boundfc(x) againstx for various values ofc

7 The Hessian and Proofs of Earlier Results

In this Section, we first discuss properties of the Hessian in§7.1, then use these in§7.2 to prove
Theorems 8 and 9, and Lemma 11. Define theinterior to be all pointsq ∈ (0, 1)n. Recall that
r∗(x) = (r∗1(qi), . . . , r

∗
i−1(qi), r

∗
i+1(qi), . . . , r

∗
n(qi)) with corresponding pairwise terms{ξ∗ij}, is an

argmax of G(q) = −F(q) whereqi is held fixed at a particular value. For notational convenience,
definer∗i = qi.

7.1 Properties of the Hessian

From (Weller and Jebara, 2013), we have all terms of the Hessian matrixHjk = ∂2F
∂qj∂qk

:

Hjk =

{

qjqk−ξjk
Tjk

if (j, k) ∈ E

0 if (j, k) /∈ E
, Hjj = −

dj − 1

qj(1− qj)
+

∑

k∈N (j)

qk(1− qk)

Tjk
, (5)

wheredj = |N (j)| is the degree ofj, andTjk = qjqk(1 − qj)(1 − qk)− (ξjk − qjqk)
2 ≥ 0, with

equality only at an edge (i.e.qj or qk ∈ {0, 1}). For an attractive edge(j, k), in the interior, as
shown in (Weller and Jebara, 2013, Lemma 14 in Supplement),ξjk − qjqk > 0 and henceHjk < 0.

Now write

Hjj =
1

qj(1− qj)
+

∑

k∈N (j)

(

qk(1− qk)

Tjk
−

1

qj(1− qj)

)

. (6)

Consider the term in large parentheses for somek ∈ N (j). First observe that the term is≥ 0,
strictly> 0 in the interior, whether the edge is attractive or repulsive. SinceHjj > 0, on the surface
∂F
∂qj

∣

∣

∣

r∗
= 0, we have

∂r∗j
∂r∗k

= −
Hjk

Hjj

∣

∣

∣

r∗
, (7)

which also holds fork = i where we definer∗i = qi.

10



Further, we may incorporate the term fork to obtain

Hjj ≥
1

qj(1− qj)
+

qk(1 − qk)

Tjk
−

1

qj(1 − qj)
=

qk(1 − qk)

Tjk
,

with equality iff j has no neighbor other thank (again allowingk = i), in which case,

∂r∗j
∂r∗k

=
ξ∗jk − r∗j r

∗
k

r∗k(1 − r∗k)
. (8)

We also show the following results, though the remainder of this Section§7.1 is not used until later
when we prove Theorem 9 in§7.2.1.

Considering the term in large parentheses from (6), using the definition ofTjk, we may write
(

qk(1− qk)

Tjk
−

1

qj(1− qj)

)

=

(

ξjk − qjqk
Tjk

)(

ξjk − qjqk
qj(1− qj)

)

= −Hjkβj→k, (9)

where we defineβj→k =
ξjk−qjqk
qj(1−qj)

, which as mentioned in the main paper after Theorem 8, is equal

to Covq(Xj ,Xk)
Varq(Xj)

, called in finance the beta ofXk with respect toXj . This is clearly positive for an
attractive edge. We next show that the range ofβj→k is bounded, as would be expected for beta.

Lemma 12. In the interior, for an edge(j, k): if attractive,0 < βj→k ≤
αjk

αjk+1 = 1− e−Wjk < 1;

if repulsive,−1 < eWjk − 1 = αjk ≤ βj→k < 0. In either case,|βj→k| =
∣

∣

∣

ξjk−qjqk
qj(1−qj)

∣

∣

∣ ≤

1− e−|Wjk| < 1.

Proof. This follows from (Weller and Jebara, 2013, Lemma 6) and the corresponding flipped result
(Weller and Jebara, 2014, Lemma 10 in Supplement; consider each of the 2 cases forpjk therein).

Defineβ∗j→k = βj→k

∣

∣

r∗
. Regarding (8), note thatβ∗j→k ≥

∂r∗k
∂r∗

j

with equality iffN (k) = {j}. This

notation will become clear when we use it in§7.2.1 to prove Theorem 9.

7.2 Derivation of earlier results

Using the results of§7.1, we first provide a general Theorem from which Lemma 11 follows as an
immediate corollary.

Theorem 13. For any binary pairwise MRF where the Bethe free energy is convex, adding fur-
ther variables to the model and holding them at fixed singleton marginal values (optimum pairwise
marginals are computed using the formula of Welling and Teh,2001), leaves the Bethe free energy
over the original variables convex.

Proof. The Bethe free energy is convex⇔ the Hessian is everywhere positive semi-definite. When
new variables are added to the system, considering (5) and (6), the only effect on the sub-Hessian
restricted to the original variables is potentially to increase the diagonal termsHjj for any original
variablej which is adjacent to a new variable. By Weyl’s inequality, this can only increase the
minimum eigenvalue of the sub-Hessian, and the result follows.

Since the Bethe free energy is convex for any model whose entire topology contains at most one
cycle (Pakzad and Anantharam, 2002), Lemma 11 follows.

We next turn to Theorem 8, then use this to prove a stronger version of Theorem 9. Keep in mind
that, as shown in (Weller and Jebara, 2013), each stationarypoint lies in an open region in the
interior q ∈ (0, 1)n. Further, as discussed in§4.1, we assume that at anyargmax point r∗(qi), the
reduced HessianH\i is non-singular. Hence, writing∇n−1F

∣

∣

qi
for the (n − 1)-vector of partial

derivatives∂F(q)
∂qj

∣

∣

∣

qi
∀j 6= i, there is an open region around any(qi, r∗(qi)) where the function

∇n−1F
∣

∣

qi
= 0 may be well approximated by an invertible linear function, allowing us to solve
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(as in the implicit function theorem) for the total derivatives
dr∗j
dqi

as the unique solutions to the

linear system
dr∗j
dqi

=
∂r∗j
∂qi

+
∑

k/∈{i,j}

∂r∗j
∂r∗

k

dr∗k
dqi
∀j 6= i, where here

∂r∗j
∂r∗

k

always means on the surface

∇n−1F
∣

∣

qi
= 0. In addition, sinceH\i is real, symmetric, positive definite, with all main diagonal

≥ 0 and all off-diagonal≤ 0, it is an M-matrix (indeed a Stieltjes matrix), which we shall use in
§7.2.1. We assume these points for the rest of this Section.

Notation: LetDj =
dr∗j
dqi

, and∂jk =
∂r∗j
∂r∗

k

, soDj =
∑

k/∈{i,j} ∂jkDk + ∂ji ∀j 6= i. For notational

convenience, definer∗i = qi and takeDi = 1. Let [n] = {1, . . . , n} and[n] \ i = {1, . . . , n} \ {i}.

Note that∂jk =
∂r∗j
∂r∗

k

≤ β∗k→j (equality iff j has no neighbor other thank), as defined above. We

shall write Hessian terms such asHjk to meanHjk

∣

∣

r∗
where this is implied by the context.

We first need the following Lemma.

Lemma 14. Consider a MRF withn variables, where then one more variableXn+1 is added with
singleton marginalr∗n+1, adjacent to exactly one of the originaln variables, sayXa with a ∈ [n]

(note we allowa = i), then:D1, . . . , Dn are unaffected, andDn+1 =
ξ∗a,n+1−r

∗

ar
∗

n+1

r∗a(1−r
∗

a)
Da.

Proof. We have the linear systemDj =
∑

k/∈{i,j} ∂jkDk + ∂ji ∀j ∈ [n] \ i. WhenXn+1 is added,

this yields a new equation forDn+1, which as shown in (8), isDn+1 =
ξ∗a,n+1−r

∗

ar
∗

n+1

r∗a(1−r
∗

a)
Da, and

the only other equation that changes is the one forDa, where we write∂′ak and∂′ai for the new
coefficients. Hence, it is sufficient to show that the earliersolutions forD1, . . . , Dn satisfy the new
equation forDa, i.e. if Da =

∑

k∈[n+1]\{i,a} ∂
′
akDk + ∂′ai.

Observe from (7) that∂′ak = ∂akHaa/H
′
aa ∀k ∈ [n], whereH ′aa incorporates the newXn+1

variable. Hence,

∑

k∈[n+1]\{i,a}

∂′akDk + ∂′ai =
Haa

H ′aa





∑

k/∈{i,j}

∂akDk + ∂ai



+ ∂′a,n+1Dn+1

=
Haa

H ′aa
Da +

ξ∗a,n+1 − r∗ar
∗
n+1

Ta,n+1H ′aa

ξ∗a,n+1 − r∗ar
∗
n+1

r∗a(1 − r∗a)
Da by (7), (5) and just above

=
Da

H ′aa

[

Haa +

(

ξ∗a,n+1 − r∗ar
∗
n+1

)2

Ta,n+1r∗a(1− r∗a)

]

=
Da

H ′aa

[

Haa +

(

r∗n+1(1− r∗n+1)

Ta,n+1
−

1

r∗a(1 − r∗a)

)]

(definition ofTa,n+1)

=
Da

H ′aa
[Haa + (H ′aa −Haa)] = Da

Theorem 8 may now be proved by induction on|Ck|. The base case|Ck| = 1 follows from (8). The
inductive step follows from Lemma 14 by considering a leaf.

7.2.1 Proof of (stronger version of) Theorem 9:

As above, we have the linear system given by the following equations:

Dj =
∑

k/∈{i,j}

∂jkDk + ∂ji ∀j 6= i ⇔ −∂ji =
∑

k 6=i

[∂jk − δjk]Dk (10)

with ∂jk =
∂r∗j
∂rk∗

= −
Hjk

Hjj
k /∈ {i, j}, ∂jj := 0, ∂ji =

∂r∗j
∂qi

= −
Hji

Hjj
, δjk =

{

1 j = k

0 j 6= k
.

Hence we may rewrite (10), multiplying by−Hjj , to give the equivalent system
∑

k 6=i

HjkDk = −Hji ∀j 6= i (11)
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Note equation (11) makes intuitive sense: for each variableXj , we haveFj = 0 at a stationary
point, then taking the total derivative with respect toqi givesHji +

∑

k 6=i HjkDk = 0.

By Theorem 8, we have the complete solution vectorDk ∀k 6= i provided the topology is
acyclic. In this setting, we rewrite the result of Theorem 8 using theβ∗ notation from above:
Dk =

∏

(s→t)∈P (i k) β
∗
s→t, where hereP (i k) is theuniquepath fromi to k.

For a general graph, there may be many paths fromi to k. Let Π(i  k) be the set of all such
directed paths. For anyr∗, for any particular pathP (i  k) ∈ Π(i  k), define itsweight to be
W [P (i k)] =

∏

(s→t)∈P (i k) β
∗
s→t. We shall prove the following result:

Dk ≥ max
P (i k)∈Π(i k)

W [P (i k)]. (12)

Note this is clearly stronger than Theorem 9 since∀j ∈ N (i), the path going directlyi → j is one
member ofΠ(i j), though in general there may be many others.

For any particularr∗, letG′ be the weighted directed graph formed from the topology of the MRF
by replacing each undirected edges− t by two directed edges:s→ t with weightβ∗s→t andt→ s
with weightβ∗t→s. Note that in an attractive model, allβ∗s→t ∈ (0, 1), see Lemma 12.

It is a simple application of Dijkstra’s algorithm to construct fromG′ a tree of all maximum weight
directed paths fromi to each vertexj 6= i, which we callT .6 (For our purpose we just need to know
that such a treeT exists.)

We want to solve (11), which we write asH\iD = −Hi, where we want to solve forD, which is
the vector ofDk ∀k 6= i, andHi is theith column ofH without its ith element. LetHT\i be the

reduced Hessian for the model onT (which is missing some edges), andHTi be theith column of
the Hessian for the model onT without itsith element. In the sub-model with only the edges ofT ,
by construction and Theorem 8,DTk = maxP (i k)∈Π(i k) W [P (i k)]. Hence, it is sufficient to
show that adding the extra edges fromT toG cannot decrease anyDk. This forms the remainder of
the proof, where we shall require the following nonsingularM-matrix property ofH\i: its inverse is
elementwise non-negative (Fan, 1958, Theorem 5’).

Let ∆ = H\i − HT\i (this accounts for edges inE(G) \ E(T ) not incident toi), η = Hi − HTi
(this accounts for edges inE(G) \E(T ) incident toi) andδ = D−DT . We must show thatδ ≥ 0
elementwise. We haveHT\iD

T = −HTi andH\iD = −Hi, henceHT\iD
T − η = −HTi − η =

−Hi = H\iD = (HT\i +∆)(DT + δ), hence−η = (HT\i +∆)δ + ∆DT ⇔ δ = (H\i)
−1(−η −

∆DT ). Thus, it is sufficient to show that the(n−1) vector−η−∆DT is elementwise non-negative.

Recall (5) and (9).−η−∆DT may be written as the sum of−ηe −∆eD
T , with oneηe and∆e for

each edgee = (s, t) in E(G) \ E(T ). For each such edgee, we have 2 cases:

Case 1,i /∈ {s, t}: ηe = 0;∆e has only 4 non-zero elements, at locations(s, s), (s, t), (t, s), (t, t).
Showing only these elements,

∆e =

(

s t

s −Hstβ
∗
s→t Hst

t Hst −Hstβ
∗
t→s

)

= −Hst

(

s t

s β∗s→t −1
t −1 β∗t→s

)

,where−Hst > 0 for an attractive edge.

Hence,−ηe−∆eD
T is 0 everwhere except elements which is−Hst(D

T
t −DTs β

∗
s→t), and element

t which is−Hst(D
T
s −DTt β∗t→s). Observe that both expressions are≥ 0 by construction ofT (for

example, considering the first bracketed term, observe thatDTt is the maximum weight of a path
from i to t, whereasDTs β

∗
s→t is the weight of a path tot going throughs).

Case 2,i ∈ {s, t}: WLOG suppose the edge is(i, s). −ηe is zero everywhere except elements
which is−His (positive).∆e has just one non-zero element at(s, s) which is−Hisβ

∗
s→i. Hence,

−ηe −∆eD
T is 0 everwhere except elements which is−His(1−DTs β

∗
s→i) > 0 by Lemma 12.

This completes the proof.

6We want the max of the prod of edge weights⇔ max of the log of the prod of edge weights⇔ max of the
sum of the log of edge weights (all negative)⇔ min of the sum of - log of the edge weights (all positive); so
really we construct the usual shortest directed paths tree using - log of the edge weights, which are all positive.
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(a) attractivelogZ, Tmax = 2
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(b) attractive margs,Tmax = 2
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(c) generallogZ, Tmax = 0.1

2 4 8 12 16
0

0.01

0.02

0.03

0.04

maximum coupling strength W
max

 

 

Original
all Clamp
maxW Clamp
best Clamp
worst Clamp
Mpower

(d) general margs,Tmax = 0.1

Figure 7:Average errors vs true,complete graph onn = 10. Consistent legend throughout.
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(b) attractive margs,Tmax = 2
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(c) generallogZ, Tmax = 0.1
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Figure 8:Average errors vs true,random graph onn = 10, p = 0.5. Consistent legend throughout.
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(c) generallogZ, Tmax = 0.1
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(d) general margs,Tmax = 0.1

Figure 9:Average errors vs true,random graph onn = 50, p = 0.1. Consistent legend throughout.
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Figure 10:‘Lamp’ topology.
maxW is likely to choosex6 since it has the
highest degree, butx4 is typically a better
choice since it lies on cycles. Mpower can rec-
ognize this and make a better choice.

8 Additional Experiments

All of the experiments reported in§5 were also run at other settings. In particular, the earlierresults
show the poor performance of the standard Bethe approximation in estimating singleton marginals
for attractive models with low singleton potentials, and indicate how clamping repairs this. Here, in
Figures 7-9, we show results for the same topologies using the higher singleton potentialsTmax = 2
for attractive models, and also show results with low singleton potentialsTmax = 0.1 for general
(non-attractive) models.

Note that in some examples of attractive models, when the ‘worst clamp’ variable was clamped, the
resulting Bethe approximation tologZ appears to worsen (see Figure 9a), which seems to conflict
with Theorem 5. The explanation is that in these examples, Frank-Wolfe is failing to find the global
Bethe optimum, as was confirmed by spot checking.

Next we show results for a particular fixed topology we call a ‘lamp’, see Figure 10, which illus-
trates how maxW can sometimes select a poor variable to clamp. We explain the Mpower selection
heuristic and demonstrate that it performs much better on this topology.
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(b) attractive margs,Tmax = 2
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(c) generallogZ, Tmax = 2
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(d) general margs,Tmax = 2

Figure 11: Average errors vs true,‘lamp’ topology Tmax = 2. Consistent legend throughout. Mpower
performs well, significantly better than maxW.
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(b) attractive margs,Tmax = 0.1
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(c) generallogZ, Tmax = 0.1
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(d) general margs,Tmax = 0.1

Figure 12:Average errors vs true,‘lamp’ topology Tmax = 0.1. Consistent legend throughout. Mpower
performs well, significantly better than maxW forlogZ.

8.1 Mpower heuristic

We would like an efficient way to select a variable to clamp which lies on many heavy simple cycles.
One problem is how to define heavy. Even with a good definition,it is still NP-hard to search over
all simple cycles. The idea for Mpower is as follows: assign each edge(i, j) a weight based on
|Wij | and create a matrixM of these weights. IfM is raised to thekth power, then theith diagonal
element inMk is the sum over all paths of lengthk from i to i of the product of the edge weights
along the path. Ideally, we might consider the sum

∑∞
k=1 M

k and use the diagonal elements to rank
the vertices, choosing the one with highest total score. Recalling (12), it is sensible to assign edge
weightsMij based on possibleβ∗i→j values. Given Lemma 12, a first idea is to use1− e−|Wij |.

However, we’d like to be sure that the matrix series
∑∞

k=1 M
k is convergent, allowing it to be

computed as(I −M)−1− I (since we shall be interested only in ranking the diagonal terms, in fact
there is no need to subtractI at the end). Thus, we need the spectral radiusρ(M) < 1. A sufficient
condition is that all row sums are< 1. Since each term1 − e−|Wij | < 1 and there at mostn − 1
such elements in any row, our first heuristic was to setMij =

1
n−1 (1− e−|Wij |). We then made two

adjustments.

First, note that the series
∑∞

k=1 M
k overcounts all cycles, though at an exponentially decayingrate.

It is hard to repair this. However, it also includes relatively high value terms coming from paths
from i to any neighborj and straight back again, along with all powers of these. We should like
to discard all of these, hence from eachith diagonal term of(I −M)−1, we subtractsi/(1 − si),
wheresi is theith diagonal term ofM2. This is very similar to the final version we used, and gives
only very marginally worse results on the examples we considered.

For our final version, we observe that1− e−|Wij | decays rapidly, and≈ tanh
|Wij |

2 . Given the form

of the loop series expansion for a single cycle, which containstanh Wij

4 terms (Weller et al., 2014,

Lemma 5), we tried instead usingMij = 1
n−1 tanh

|Wij |
4 , and it is for this heuristic that results

are shown in Figures 11 (forTmax = 2) and 12 (forTmax = 0.1). Observe that for this topol-
ogy, Mpower performs close to optimally (almost the same results as for best Clamp), significantly
outperforming maxW in most settings. Note, however, that inthe experiments on random graphs
reported in§5, Mpower did not outperform the simpler maxW heuristic. In future work, we hope to
improve the selection methods.
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