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Abstract  

Given a probabilistic world model, an important problem is to find the maximum 
a-posteriori probability (MAP) instantiation of all the random variables given the 
evidence. Numerous researchers using such models employ some graph representation 
for the distributions, such as a Bayesian belief network. This representation simplifies 
the complexity of specifying the distributions from exponential in n, the number of 
variables in the model, to linear in n, in many interesting cases. We show, however, 
that finding the MAP is NP-hard in the general case when these representations are 
used, even if the size of the representation happens to be linear in n. Furthermore, 
minor modifications to the proof show that the problem remains NP-hard for various 
restrictions of the topology of the graphs. The same technique can be applied to the 
results of a related paper (by Cooper), to further restrict belief network topology in the 
proof that probabilistic inference is NP-hard. 
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1. I n t r o d u c t i o n  

Graphical representations o f  statistical or causal dependence frequently con- 
stitute an important  component  when a probabilistic world knowledge is used. 
Three such representations of  interest are Bayesian belief networks [ 8 ], Markov 
random fields [5 ], and a generalization of  the latter, Markov networks [8]. 
In all these cases, the graphical representation makes the dependencies in our 
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world knowledge explicit, as well as saving many orders of magnitude in the 
size of the representation. If our model has n random variables, then represent- 
ing the complete distribution might require space exponential in n. By using 
the structuring (and independence assumptions) available in the graphical 
representation, and a very sparse graph, space linear in n is frequently suffi- 
cient. In this paper, we focus on Bayesian belief networks (also called causal 
networks or probabilistic influence diagrams in the literature), and discuss the 
other models only briefly at the end. 

Diagnostic reasoning, also known as abductive reasoning or explanation, 
is an important problem in artificial intelligence and its applications, such 
as natural language understanding, medical diagnosis, circuit fault diagnosis, 
common-sense explanation, and pattern recognition. Abductive reasoning un- 
der (probabilistic) uncertainty can be modeled either as finding posterior 
distribution given some evidence, e.g. [1,8], or as a maximum a-posteriori 
probability (MAP) instantiation of all the variables in the network given the 
evidence [5] (also called most probable explanation (MPE), [8]), as well as 
other schemes. Each of these schemes has its merits, discussed elsewhere [ 9,14 ]. 
We are concerned here with the computational complexity of the problems. 
In the special case of singly connected networks, both problems are known 
to have polynomial-time algorithms [6,8]. The case of multiply connected 
networks, however, was suspected to be hard for both problems. Indeed, the 
former problem, also called "probabilistic inference", was shown to be NP-hard 
for Bayesian belief networks in [2]. The latter (MAP) problem, also seems to 
be hard for belief networks, but no such result seems to have been published. 
In fact, several papers misquote [2] as containing the proof, while the paper 
addresses only the problem of computing (prior or posterior) distributions. 1 
The above proof was later used in [ 3 ] to show that even approximating prob- 
abilistic inference is NP-hard. In [14], a problem very close to MAP called 
"incomplete assignment cost-based abduction" was shown to be NP-hard, and 
indeed we use components of that proof here. Since the incomplete assignment 
cost-based abduction problem is somewhat different from MAP, additional 
tricks had to be added for the proof to go through. 

The fact that the problem is hard suggests that either approximation algo- 
rithms or domain-specific algorithms be used for computing MAPs. As it turns 
out, such algorithms have in fact been used in the literature. For example, a 
simulated annealing algorithm was used for finding the MAP over a Markov 
field representing pixel and edge processes for image restoration in [5]. More 
recently, genetic algorithms have been applied to probabilistic reasoning prob- 
lems [10]. Other approaches may also prove fruitful, such as converting the 

1 Actually, by reading between the lines of the proof in [2], it is possible to adapt the proof to 
MAPs with evidence. However, to show that the "empty evidence" MAP problem is NP-hard, the 
modifications needed are complicated, since we are not allowed to clamp a variable to a certain 
value, and because finding any assignment with non-0 probability can be done in polynomial time. 
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problem to linear inequalities and obtaining a 0-1 solution using simplex and 
branch and bound [ 1 l, 12 ]. 

In what follows, we review belief networks and the MAP problem, and 
proceed to show that it is NP-hard. We extend the results to belief networks 
with several topological restrictions. Finally, we discuss the MAP problem for 
the other graph representations, and we show how our proof can be used to 
make a minor improvement to the results of  [2]. 

2. Bayesian belief networks 

A (Bayesian) belief network is a directed acyclic graph (DAG) augmented 
with conditional probability distributions residing in each node. Nodes stand 
for random variables, which are used to represent domain ("real world") 
events. Henceforth, we will use the terms "variable" and "node" interchange- 
ably. In general, random variables may be either continuous or discrete, but 
in order to prove NP-hardness it is sufficient to assume that the variables are 
binary (and thus discrete) variables. Let us designate the states of  the binary 
variables by T for "true" and F for "false". 

For each node, a probability of  each state of  the node given each possible 
state of  its parents is given. Let us denote the set of  parents of a node v by 
~(v) .  The conditional probability 2 P ( v  I 7t(v)) is given for each possible 
instantiation of  the variables v and ~z(v ). We define the probability of  an 
event given the empty set as the prior probability. Thus, for a root node v 
(i.e. a node with no parents) the probability P ( v  I ~ z ( v ) )  = P ( v  ] ~)) - P ( v )  

is given for each state of v. 
We represent a belief network by a triple (V, E, P) ,  where V is the set of 

nodes in the network (with n = IVI), E is the set of  directed edges ( v , u ) ,  
and P is a set of  conditional probabilities (as defined above),  indexed by the 
nodes of  V. A belief network represents a distribution over the sample space 
consisting of  all possible instantiations to all of  its random variables, as follows 
[8]: 

n 

P ( V l , V 2  . . . . .  v n )  = 1-I P ( v i  l TE(vi) ). (1) 
i=l 

Eq. (1) shows us where the savings in representation size come from. Rep- 
resenting the full distribution of  n binary variables directly requires Cf = 2" 
probabilities. Using a belief network (with its inherent independence assump- 
tions [8]),  we only need: 

2 A variable or set of variables appearing inside a probability term stand for the event where the 
variables assume every possible instantiation. For example, let v and w be binary nodes. Then 
P(v) stands for P(v = T) and P(v  = F),  and P(v)  = P(v  I w)  stands for the four equations: 
P(v = T) = P(v  = T [ w = T),  P(v  = T) = P(v  = T I w = F),  P(v = F)  = P(v  = F [ 
w = T),andP(v = F )  = P ( v  = F [ w  = F ) .  



402 S.E. Shimony /Artificial Intelligence 68 (1994) 399-410 

n 

Cb = y ~ 2  =0,'). (2) 
i=l 

In the research community, it is assumed that the maximum in-degree in the 
graph k is much less than n, or even constant. This provides a considerable 
savings in space. Additionally, algorithms exist for performing probabilistic 
inference or MAP computation that do not expand the entire probability space 
during computation [6-8,13]. However, except for singly-connected graphs, 
where polynomial-time algorithms for MAP and probabilistic inference exist 
[8], all existing exact algorithms have an exponential runtime term, based on 
maximum clique size [7], cut-set size [8], or other factors [13]. 

3. MAP problems 

The MAP problem is defined as follows. Given a probability distribution over 
a set of  variables V, and evidence E, which is an instantiation of a (possibly 
empty) set of  variables E c F, find the instantiation (or value assignment) .4 
to all the variables V that maximizes P(.4 I E). (It does not matter whether .4 
assigns values to all of  F or just to F - E, because P(A N B I B) = P(A  I B) 
for any events A and B.) We will show that even the restricted form, where 
the evidence is empty, is NP-hard. Since belief networks represent probability 
distributions, we have a special case of the MAP problem, which we call 
MAPBNET. Note that we need to show that the problem is hard for a small 
maximum in-degree, as otherwise the size of the problem representation may 
be exponential in I FI. 

In order to prove NP-hardness, we will use a related decision problem, 
defined as follows: given a belief network, is there an instantiation of variables 
such that its probability is at least p? We call this problem MAPBNETD. 
If we have a solution to MAPBNET, we can easily obtain a solution to 
MAPBNETD: plug the instantiation obtained as the solution to MAPBNET 
into Eq. ( 1 ) (computation time linear in n) and compare the result with p. 

4. MAPBNET is NP-hard: proof 

To prove that MAPBNETD is NP-complete, it is sufficient to show that 
MAPBNETD is in NP, and to reduce a problem known to be NP-complete to 
MAPBNETD. It is possible to use several different such problems. We choose 
to use the well-known vertex cover (VC) problem [4, p. 190], as this choice 
allows the NP-completeness results to hold for special cases where the topology 
of the belief network is severely restricted. Since a solution to MAPBNET 
allows us to find a solution to MAPBNETD in linear time, this will show that 
MAPBNET is NP-hard as well. 
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Fig. 1. Vertex cover example graph. 

4.1. Definition of vertex cover 
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The vertex cover problem (VC), is defined as follows: given a graph, is there 
a set of  vertices in the graph, with size at most K, that "covers" all the edges 
of  the graph? (That is, such that removing all the vertices in this set, together 
with their incident edges, leaves us with a graph with no edges.) Formally, 
the problem is: given a graph G = (V, E) ,  and an integer K, is there a subset 
C c_ V such that [ c I < K, and for all edges e = ('u1, v2)  where e E E, at 
least one of  Vl and v2 is in C? 

For example, consider the graph of  Fig. 1, consisting of  vertices V = 
{VI, V2, V3, V4, V5} and edges E = {EI,E2,E3,E4,Es,E6}. In this graph there is 
no vertex cover of  size K = 2, but there is at least one vertex cover of  size 
K = 3, e.g. { V1, V2, V4}. Thus, the answer to the vertex cover decision problem 
is "yes" for K >~ 3 and "no" for K ~< 2 in this example. We call this VC 
problem instance VCex. 

4.2. Transforming VC to MAPBNETD 

We now transform VC to MAPBNETD. Let the vertex cover problem in- 
stance be the graph G = (V', E ' ) ,  where we need to decide whether there 
is a vertex cover of  size K or less. Let n' = IV'l and m' = IE'I. Assuming 
that neither the edge set nor the vertex set are empty (in which case the VC 
problem would have a trivial solution), we construct a belief network ( V, E, P)  
from G. The nodes V of the belief networks are constructed as follows (except 
for the AND nodes, to be explained later on): 

(1) For each vertex in V' and each edge in E'  construct a unique binary 
node in the belief network. For each vertex or edge x E V ' u  E', let 
us denote its counterpart node in the belief network by the one-to-one 
function B(x) .  By construction, B is invertible, so let B -1 denote the 
inverse of B. If  node B -1 (v) is a vertex in V', we call it a vertex setting 
node. Otherwise (B -1 (v) is an edge in E ' ) ,  we call it an edge setting 
node. 

(2) Construct a binary node S, the "evidence" node (it will eventually have 
to be set to T in any MAP). 

(3) Construct 2n' binary nodes Dx . . . . .  D 2 n ,  , the "probability drain" nodes. 
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The edge set E of  the belief network (initially empty) and the conditional 
distributions P are constructed as follows: 

(1) All vertex setting nodes are root nodes (i.e. have no parents). If v is a 
vertex setting node, then its distribution is P ( v  = T) = 0.25 and thus 
P ( v  = F )  = 1 - P ( v  = T) = 0.75. 

(2) For each edge setting node v, perform the following operations: Let 
e = B - ~ ( v ) ,  the edge in G corresponding to v. Let Xl and x2 be the 
vertices in G incident on e, Ul = B ( x l ) ,  and u2 = B(x2) .  Add to E 
edges from Ul to v and from u2 to v. Set the conditional distribution 
of  v so that v is a pure OR node, i.e. 

0, ul = F, u2 = F, 
P ( v  = T I b/1 ,U2)  = 1, otherwise. (3) 

(3) Connect the edge setting nodes to the evidence node S, using pure AND 
nodes where necessary. A pure AND node v with parents ul . . . . .  u, has 

1, Vi k >~ i >l 1 ~ ui = T, 
P ( v  = T I U l , . . . ,Uk )  = 0, otherwise. (4) 

Use the following algorithm for connecting the AND nodes: 
(a) Set A to the set of  edge setting nodes. 
(b) If  IAI -< 2, then add to E an edge from each of  the nodes in A to 

S, let S be a pure AND node, and stop. 
(c) Let A' be a set of  L½1AIJ newly constructed pure two-input AND 

nodes (i.e. construct them now). Let there be some index on the 
nodes of  A and on the nodes of  A', i.e. Ai denotes node i of  A, 
starting at 0, and A~ denotes node i of A'. Partition A into a set of 
disjoint pairs aj = (A2j, A2j+I) (with one unpaired node v if IA[ 
is odd).  For each such pair, aj, add to E an edge from A2j tO A~-, 
and an edge from A2j+I to A~. 

(d) If  [A[ is even, then set A to A'. Otherwise, set A to A' U {v}. 
(e) Go to step 3(b) . 

(4) For each probability drain node Di (with 1 <~ i <~ 2n') ,  add to E an 
edge from S to Di. The distribution of  each node Di is 

1, S = T ,  
e (Di - - -  T IS )  = 0.5, S = F .  (5) 

Let a denote the number of  AND nodes. Clearly, a < m'. Let ANDi 
denote the i th AND node (the order is immaterial). 

For example, the belief network constructed for the graph in VCex and Fig. 1, 
is shown in Fig. 2, where edge and vertex setting nodes retain the same names 
as their counterparts in the original graph, and AND nodes appear as Ai. 
The intuition behind the construction is as follows: vertex setting nodes are 
constructed to be true if the corresponding vertex is in the vertex cover. Edge 

the following distribution: 
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0.25 o.25 0.25 o.25 0.25 7 

[( T=.-- 

Fig. 2. Belief network for vertex cover example. 

setting nodes are true if the respective edge is covered. All edge setting nodes 
are AND'ed together in S in order to force them to be true, i.e. to force all 
edges to be covered. Since we are not allowed to introduce evidence (we would 
want to state S = T),  we use the probability drain nodes: if S is true, then 
all drain nodes are true with probability 1. If S is false, however, then each 
drain node is true or false with equal probability, and thus the probability of 
each such instantiation is very low, thereby "draining" the probability of any 
instantiation that has S = F.  This essentially forces S to be true. 

The AND node construction is not really necessary: we could have made S 
into an m'-input AND node (essentially this is what the AND-node part of the 
network is doing). In that case, however, specifying the distribution as an array 
would have taken exponential space and time. Additionally (even if we assumed 
a linear-space functional distribution representation), this construction allows 
us to have a belief network constrained to an in-degree of 2. 

As to the probability of  any complete instantiation, we can rewrite Eq. (1), 
enumerating the product terms: 

2n ~ a 

e ( v )  = e ( s  I n(s)  ) 1-I e(o~ l s)  I I  P(AND~ I n(AND;)) 
i=1 i=1 

1-I P(B(e)  ln (B(e) ) )  1-'[ P(B(x) ) .  (6) 
eEE' xEV' 

The construction of  the network takes time polynomial in the size of G: the 
number of vertices in the belief network is n (consisting of n' vertex setting 
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nodes, m' edge setting nodes, node S, 2n' probability drain nodes, and at 
most r n ' -  1 AND nodes). Thus, n ~< 3(n'  + rn'). Since, by construction, the 
maximum in-degree is 2, the number of  edges in the belief network is at most 
2n. More importantly, the number of entries in the distribution representation 
is bounded by 2 x 22 x n = 8n ~< 24(n'  + m') ,  and thus the size of the belief 
network representation, as well as the time for constructing it, are polynomial 
(actually linear) in the size of G. 

We now show that the vertex cover problem has a vertex cover of size at 
most K if and only if the constructed belief network has an instantiation ,4 to 
all the nodes such that: 

/x 3 n ' -K  
P ( , 4 )  >1 p - 4n, (7) 

Let C be a vertex cover of size L ~< K. We construct instantiation ,4 to 
the nodes of  the belief network as follows: set all edge setting nodes, all AND 
nodes, node S, and all probability drain nodes to T. For each vertex setting 
node v, i f B - l ( v )  E C then v = T, otherwise v = F.  

By construction of  ,4, the first term of Eq. (6), as well as the first and 
second products of  the equation, are 1. The third product is also 1, because 
for each edge setting node v (nodes appearing as Ei in Fig. 2), at least one 
of  its parents is T, and v is a pure OR node. That occurs because B - l ( v )  
is incident on at least one vertex x E C. Since by construction, B (x) is a 
parent of  v, and it is set to T by the construction of  ,4, we have that v is T 
with probability 1. We remain with the last product term, which is the only 
one not equal to 1. In fact, its terms are either 0.25 (for nodes v such that 
B - l  (v) E C) or 0.75 (for all other vertex setting nodes). Thus, 

P ( , 4 )  = I - I  P ( B ( x ) )  
xEV ~ 

and, since L ~< K, we have 

3 n ' -L  3 n ' - K  

P ( , 4 )  - 4n, >~ 4n, - P. 

1 3 3 n'-L x~C-4 1FI 4 - 4 n' ' ( 8 )  
x E V ' - C  

We now show that the existence of  an instantiation ,4 with P ( , 4 )  >1 p 
implies the existence of a vertex cover with size at most K. First, we will show 
that for any n' >i K >t 1, an instantiation such that P( ,4)  >i p must have all 
the nodes set to T, except for some vertex setting nodes. If S = F,  then by 
looking at Eq. (6) we can see that the first product is 2 -2n' = 4 -n', and since 
all terms in the last product of  Eq. (6) are less than 1, and no probability term 
can be greater than 1, any such instantiation has a probability less than 4 -n'. 
Thus, clearly P(,4)  < p for any K, and to have any way of  having a greater 
probability, S must be instantiated to T. This, in turn, forces Di = T,  all the 
AND nodes to be T, and all edge setting nodes to be T (if any of  these nodes 
are F,  some probability product term will be 0, thus P( ,4)  = 0). Since all 
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non-vertex-setting nodes have to be T, all but the last product in Eq. (6), are 
1. Also, for each edge setting node v, at least one parent has to be T in any 
non-0-probability instantiation (as v is a pure OR node). This means that for 
instantiation A with P(A)  >i p for any K, the set of  vertex setting nodes that 
are T induce a vertex cover on G: simply let C include all nodes x such that 
B (x) = T in the instantiation. 

Let A be an instantiation which obeys Eq. (7) for some K. Clearly, in 
addition to having all the properties shown in the previous paragraph, it must 
have at most K vertex setting nodes instantiated to T. That is because for such 
instantiations, if exactly L vertex setting nodes are T, then 

3 n ' -L  
P ( A ) -  4 n , ,  

and thus P(A)  >i 3n'-K/4 n' only if L <~ K. Now, since the instantiation 
induces a vertex cover of  size L (the number of  vertex setting nodes instantiated 
to T), and L < K, we have a vertex cover of size at most K, as required. This 
completes the proof that MAPBNETD is NP-hard. 

To show that MAPBNETD is in NP, note that to compute the probability 
of an instantiation takes time linear in n (multiplying n terms). Thus, using a 
nondeterministic machine, guess an instantiation A, compute its probability, 
and answer "yes" if P(A)  >1 p. Note that despite the fact that the probabilities 
are real numbers, computing the probability of the constructed network requires 
for the computation or for representing the probability to compare with, at 
most 4n + 1 bits. That is because all the probabilities are either 0, or 1, or a 
multiple of ½ (2n' nodes), or a multiple of ~ (n' nodes). Thus, MAPBNETD 
is NP-complete in the strong sense. 

Finally, MAPBNET is the computational version of MAPBNETD, i.e. it 
comes up with the highest probability complete instantiation. Given this in- 
stantiation, it takes time linear in n to find a solution to MAPBNETD: just 
use Eq. (1), or even its more specific case, Eq. (6), and compare the result 
with p. Answer "yes" if greater or equal, "no" otherwise. Thus, MAPBNET is 
NP-hard. 

5. Corollaries and other results 

We can use the proof of the previous section to obtain complexity results on 
belief networks with restricted topology. First, note that if  we allow functional 
specification of distributions, we can allow node S to have all edge setting 
nodes as parents, without making the representation exponential in size. In 
this case, the depth of  the network (longest directed path) is independent of  
the problem size, and is equal to 4 (i.e. 3 arcs). Thus, the complexity results 
hold for networks restricted to a depth of 4. 

More important results are the bounds on the in-degree and out-degree of 
the network. In the proof, the maximum in-degree was 2, but the maximum 
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AND subnetwork 

\ 

# AND subnetwork 

~1 added follower 
nodes 

,) 
before 

F~ !nodes follower 

Fig. 3. Expanded out-degree-2 belief network. 
out-degree was unbounded. By using a simple trick, adding more nodes that 
act as "followers", we can limit the out-degree to 2 as well. A follower node v 
has one parent u, and the following degenerate distribution: 

1, u =  T, 
P ( v  = T [ u )  = O, u = F .  (9) 

Now, if a node v has more than two outgoing edges, simply attach its outgoing 
edges to one or two follower nodes, and have the original children of v be 
children of the follower nodes, for up to 4 original outgoing edges. If a greater 
number is needed, construct a binary tree of followers of the required depth. 
Fig. 3 shows one way to convert our example network into a network with a 
maximum out-degree 2, where only the modified regions are shown. Since these 
follower nodes do not change the distribution of the network, as long as their 
value equals their parent node, and cause the probability of any instantiation 
to drop to 0 if they do not, the NP-completeness proof still goes through. 
Note that the depth of the network is now logarithmic in n (the number of 
the follower nodes is less than n, and they only add to the network a depth 
logarithmic in n). 

We thus have the following corollary: MAPBNETD remains NP-complete 
(and MAPBNET remains NP-hard) even if we restrict the topology of the 
network so as to obey all of  the following constraints: 

• Maximum in-degree is 2. 
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• Maximum out-degree is 2. 
• Maximum depth is logarithmic in n. 
In addition to these results, the tricks of using gate (e.g. AND or OR) 

nodes and follower nodes should also apply to the reduction of [2], thus 
extending the NP-hardness results for the probabilistic inference and for the 
approximation of probabilistic inference [3] problems to maximum in-degree 
and out-degree of 2. Logarithmic depth can be achieved by rearranging the 
part called "overall-satisfaction-testing component" in [2], which is a ladder 
(unbalanced binary tree) of pure AND nodes, into a balanced binary tree. 

Finally, it should be possible to use a similar proof to show that the MAP 
problem is NP-hard for Markov networks, the undirected version of belief net- 
works. We can use the same reduction from VC for the proof, by converting the 
belief network into a Markov network, e.g. as in [7]. In doing the conversion, 
one must still overcome several minor complications. Thus, the details of the 
conversion are beyond the scope of this paper (see [15] for details). 
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