Clamping Variables and Approximate Inference

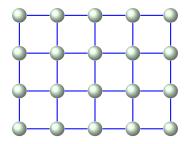
Adrian Weller

Slides and full paper at www.cs.columbia.edu/~adrian

Work with Tony Jebara, Columbia University

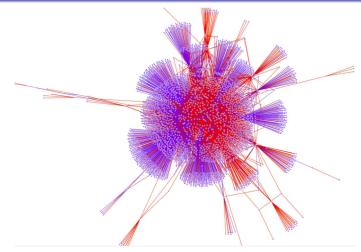
Motivation: undirected graphical models

- Powerful way to represent relationships across variables
- Many applications including: computer vision, social network analysis, deep belief networks, protein folding...
- In this talk, focus on binary pairwise (Ising) models



Example: Grid for computer vision (attractive)

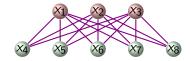
Motivation: undirected graphical models



Example: Part of epinions social network (general)

Figure courtesy of N. Ruozzi

Motivation: undirected graphical models



Example: Restricted Boltzmann machine (general)

- A fundamental problem is *marginal inference*
 - Estimate marginal probability distribution of one variable

$$p(x_1) = \sum_{x_2,...,x_n} p(x_1, x_2, ..., x_n)$$

- Closely related to computing the *partition function*
- Computationally intractable, focus on approximate methods
- Will show that combining approximate methods with *clamping* can be very fruitful for marginal inference

Outline: Clamping can be very helpful

- 1. Motivation
- 2. Background on inference and clamping

Combining clamping variables with variational inference, we obtain

- 3. Strong theoretical results
- 4. Promising empirical results

Background: Binary pairwise models

- Binary variables $X_1, \ldots, X_n \in \{0, 1\}$
- Pairwise potentials θ
- Write $x = (x_1, ..., x_n)$ for one configuration, $\theta \cdot x$ for its score
- Probability distribution given by

$$p(x) = \frac{1}{Z} \exp(\theta \cdot x)$$

To ensure probabilities sum to 1, need normalizing constant

$$Z = \sum_{x} \exp(\theta \cdot x)$$

• Z is called the *partition function*, a fundamental quantity we'd like to compute or approximate

Background: A variational approximation

Recall
$$p(x) = \frac{1}{Z} \exp(\theta \cdot x)$$

• Exact inference may be viewed as optimization,

$$\log Z = \max_{\mu \in \mathbb{M}} \left[\ \theta \cdot \mu + \mathbf{S}(\mu) \ \right]$$

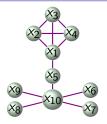
 $\mathbb M$ is the space of marginals that are globally consistent, S is the (Shannon) entropy

• Bethe makes two pairwise approximations,

$$\log Z_B = \max_{q \in \mathbb{L}} \left[\theta \cdot q + S_B(q) \right]$$

 \mathbb{L} is the space of marginals that are *pairwise consistent*, S_B is the Bethe entropy approximation

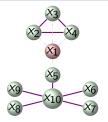
- Loopy Belief Propagation finds stationary points of Bethe
- On acyclic models, Bethe is exact $Z_B = Z$



Example 'lamp' graph

To compute the partition function Z, can enumerate all states and sum

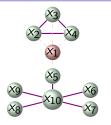
$x_1 x_2 \dots x_{10}$	score	exp(score)
000	1	2.7
001	2	7.4
$0 \ 1 \ \dots 1$	1.3	3.7
100	-1	0.4
$1 \ 0 \ \dots 1$	0.2	1.2
111	1.8	6.0
Total $Z =$		47.1



Can split Z in two: clamp variable X_1 to each of $\{0, 1\}$, then add the two sub-partition functions: $Z = Z|_{X_1=0} + Z|_{X_1=1}$

When clamp a variable, remove it from the graph

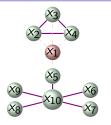
$x_1 x_2 \dots x_{10}$	score	exp(<i>score</i>)	
000	1	2.7	
001	2	7.4	
$0 \ 1 \ \dots 1$	1.3	3.7	27.5
100	-1	0.4	
$1 \ 0 \ \dots \ 1$	0.2	1.2	
111	1.8	6.0	19.6
Total Z =		47.1	



Can split Z in two: clamp variable X_1 to each of $\{0, 1\}$, then add the two sub-partition functions: $Z = Z|_{X_1=0} + Z|_{X_1=1}$

When clamp a variable, remove it from the graph

• After removing the clamped variable, if the remaining sub-models are acyclic then can find sub-partition functions efficiently (BP, Bethe approximation is exact on trees)

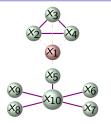


Can split Z in two: clamp variable X_1 to each of $\{0, 1\}$, then add the two sub-partition functions: $Z = Z|_{X_1=0} + Z|_{X_1=1}$

When clamp a variable, remove it from the graph

- After removing the clamped variable, if the remaining sub-models are acyclic then can find sub-partition functions efficiently (BP, Bethe approximation is exact on trees)
- If not,
 - Can repeat: clamp and remove variables until acyclic, or
 - Settle for approximate inference on sub-models

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1}$$



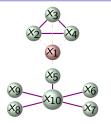
Can split Z in two: clamp variable X_1 to each of $\{0, 1\}$, then add the two sub-partition functions: $Z = Z|_{X_1=0} + Z|_{X_1=1}$

When clamp a variable, remove it from the graph

- After removing the clamped variable, if the remaining sub-models are acyclic then can find sub-partition functions efficiently (BP, Bethe approximation is exact on trees)
- If not,
 - Can repeat: clamp and remove variables until acyclic, or
 - Settle for approximate inference on sub-models

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1}$$

Will this always lead to a better estimate than approximate inference on the original model?



Can split Z in two: clamp variable X_1 to each of $\{0, 1\}$, then add the two sub-partition functions: $Z = Z|_{X_1=0} + Z|_{X_1=1}$

When clamp a variable, remove it from the graph

- After removing the clamped variable, if the remaining sub-models are acyclic then can find sub-partition functions efficiently (BP, Bethe approximation is exact on trees)
- If not,
 - Can repeat: clamp and remove variables until acyclic, or
 - Settle for approximate inference on sub-models

 $Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1}$

Will this always lead to a better estimate than approximate inference on the original model? *Often but not always*

A variational perspective on clamping

• Bethe approximation

$$\log Z_B = \max_{q \in \mathbb{L}} \left[\ heta \cdot q + \mathcal{S}_B(q) \
ight]$$

• Observe that when X_i is clamped, we optimize over a subset

$$\log Z_B|_{X_i=0} = \max_{q\in\mathbb{L}:q_i=0} \left[\theta \cdot q + S_B(q) \right]$$

$$\Rightarrow Z_B|_{X_i=0} \leq Z_B$$
, similarly $Z_B|_{X_i=1} \leq Z_B$

Recap of Notation		
Ζ	true partition function	
Z _B	Bethe optimum partition function	
$Z_B^{(i)} := Z_B _{X_i=0} + Z_B _{X_i=1}$	approximation obtained when <i>clamp and sum approximate</i> sub-partition functions	

Clamping variables: an upper bound on Z

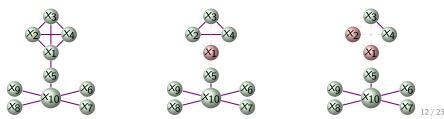
• From before,

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1} \leq 2Z_B$$

- Repeat: clamp and remove variables, until remaining model is acyclic, where Bethe is exact
- For example, if must delete 2 variables X_i, X_j , obtain

$$Z_B^{(ij)} := \sum_{a,b \in \{0,1\}} Z_B |_{X_i = a, X_j = b} \le 2^2 Z_B$$

But sub-partition functions are *exact*, hence LHS = Z



Clamping variables: an upper bound on Z

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1} \le 2Z_B$$

- Repeat: clamp and remove variables, until remaining model is acyclic, where Bethe is exact
- Let $\nu(G)$ be the minimum size of a feedback vertex set

Theorem (result is tight)

۲

$$Z \leq 2^{\nu} Z_B$$

Clamping variables: an upper bound on Z

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1} \le 2Z_B$$

- Repeat: clamp and remove variables, until remaining model is acyclic, where Bethe is exact
- Let $\nu(G)$ be the minimum size of a feedback vertex set

Theorem (result is tight)

۲

 $Z \leq 2^{\nu} Z_B$

Attractive models: a lower bound on Z

- An attractive model is one with all edges attractive
- Recall definition,

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1}$$

Theorem

For an attractive binary pairwise model and any X_i , $Z_B \leq Z_B^{(i)}$

Corollary (similar proof to earlier result; first proved Ruozzi, 2012) For an attractive binary pairwise model, $Z_B < Z$

Attractive models: a lower bound on Z

- An attractive model is one with all edges attractive
- Recall definition,

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1}$$

Theorem

For an attractive binary pairwise model and any X_i , $Z_B \leq Z_B^{(i)}$

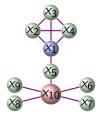
Corollary (similar proof to earlier result; first proved Ruozzi, 2012) For an attractive binary pairwise model, $Z_B \leq Z$

 \Rightarrow each clamp and sum can only *improve* Z_B

Experiments: Which variable to clamp?

Compare error $|\log Z - \log Z_B^{(i)}|$ to original error $|\log Z - \log Z_B|$ for various ways to choose which variable X_i to clamp:

- best Clamp best improvement in error of Z in hindsight
- worst Clamp worst improvement in error of Z in hindsight
- avg Clamp average performance
- maxW max sum of incident edge weights $\sum_{i \in N(i)} |W_{ij}|$
- Mpower more sophisticated, based on powers of related matrix



Experiments: attractive random graph n = 10, p = 0.5

unary
$$\theta_i \sim U[-2, 2],$$

edge $W_{ij} \sim U[0, W_{max}]$

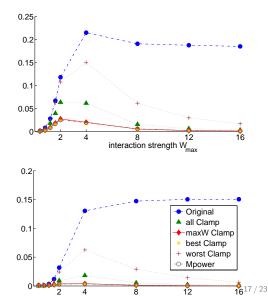
Error of estimate of $\log Z$

Observe

- Clamping any variable helps significantly
- Our selection methods perform well

Avg ℓ_1 error of singleton marginals

Using Frank-Wolfe to optimize Bethe free energy



Experiments: general random graph n = 10, p = 0.5

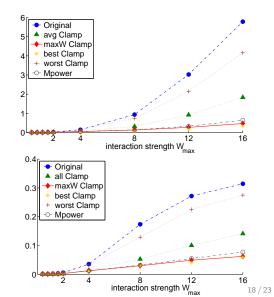
unary $\theta_i \sim U[-2, 2],$ edge $W_{ij} \sim U[-W_{max}, W_{max}]$

Error of estimate of $\log Z$

Results remain promising for higher *n*

Avg ℓ_1 error of singleton marginals

Using Frank-Wolfe to optimize Bethe free energy



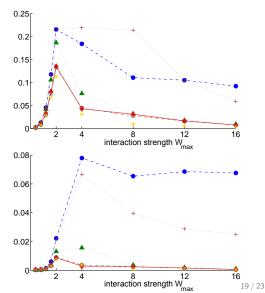
Experiments: attractive random graph n = 50, p = 0.1

unary $heta_i \sim U[-2,2],$ edge $W_{ij} \sim U[0, W_{max}]$

Error of estimate of $\log Z$

'worst Clamp' performs *worse* here due to suboptimal solutions found by Frank-Wolfe

Avg ℓ_1 error of singleton marginals



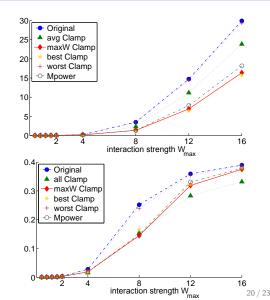
Experiments: general random graph n = 50, p = 0.1

unary $\theta_i \sim U[-2, 2]$, edge $W_{ij} \sim U[-W_{max}, W_{max}]$

Error of estimate of $\log Z$

Performance still good for clamping just one variable

Avg ℓ_1 error of singleton marginals



Experiments: attractive 'lamp' graph

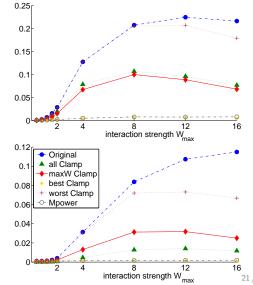
unary
$$\theta_i \sim U[-2, 2],$$

edge $W_{ij} \sim U[0, W_{max}]$

Error of estimate of $\log Z$

Mpower performs well, significantly better than maxW



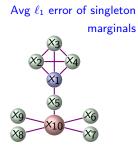


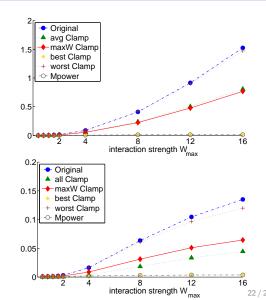
Experiments: general 'lamp' graph

unary $\theta_i \sim U[-2, 2]$, edge $W_{ij} \sim U[-W_{max}, W_{max}]$

Error of estimate of $\log Z$

Mpower performs well, significantly better than maxW





Recap of theoretical results

- Simple observation on variational view of clamping variables gives upper bound $Z_B^{(i)} \leq 2Z_B$
- Repeat until graph is acyclic, where Bethe is exact
- Yields effective upper bound on Z

For attractive models,

- Theorem: $Z_B \leq Z_B^{(i)}$ for any X_i
- Then argue as above to yield simple new proof of $Z_B \leq Z$
- Clamping any variable and summing can only improve Z_B
- To prove Theorem above, derive stronger result on convexity of function combining conditioned Bethe optimum with singleton entropy, ask if interested

Thank you!

Slides and full paper at www.cs.columbia.edu/~adrian

Extra slides for questions or further explanation

Clamping variables: strongest result for attractive models

$$\log Z_B = \max_{q \in \mathbb{L}} \left[\theta \cdot q + S_B(q) \right]$$

- For any variable X_i and $x \in [0, 1]$, let $q_i = q(X_i = 1)$ and $\log Z_{Bi}(x) = \max_{q \in \mathbb{L}: q_i = x} [\theta \cdot q + S_B(q)]$
- $Z_{Bi}(x)$ is 'Bethe partition function constrained to $q_i = x$ ' Note: $Z_{Bi}(0) = Z_B|_{X_i=0}, Z_{Bi}(x^*) = Z_B, Z_{Bi}(1) = Z_B|_{X_i=1}$

Clamping variables: strongest result for attractive models

$$\log Z_B = \max_{q \in \mathbb{L}} \left[\theta \cdot q + S_B(q) \right]$$

- For any variable X_i and $x \in [0, 1]$, let $q_i = q(X_i = 1)$ and $\log Z_{Bi}(x) = \max_{q \in \mathbb{L}: q_i = x} [\theta \cdot q + S_B(q)]$
- Z_{Bi}(x) is 'Bethe partition function constrained to q_i = x' Note: Z_{Bi}(0) = Z_B|_{Xi=0}, Z_{Bi}(x*) = Z_B, Z_{Bi}(1) = Z_B|_{Xi=1}
 Define new function.

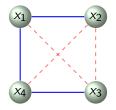
$$A_i(q_i) := \log Z_{Bi}(q_i) - S_i(q_i)$$

Theorem (implies all other results for attractive models)

For an attractive binary pairwise model, $A_i(q_i)$ is convex

• Builds on derivatives of Bethe free energy from [WJ13]

Example: here clamping any variable worsens Z_B estimate



Blue edges are attractive with edge weight +2 Red edges are repulsive with edge weight -2 No unary potentials

(performance is only slightly worse with clamping)

Experiments: attractive complete graph n = 10, TRW

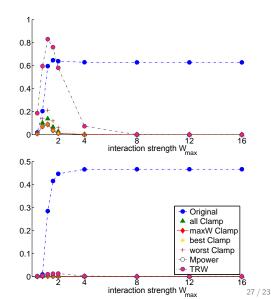
unary $\theta_i \sim U[-0.1, 0.1],$ edge $W_{ij} \sim U[-W_{max}, W_{max}]$

Error of estimate of $\log Z$

Note low unary potentials

Avg ℓ_1 error of singleton marginals

Clamping a variable 'breaks symmetry' and overcomes TRW advantage



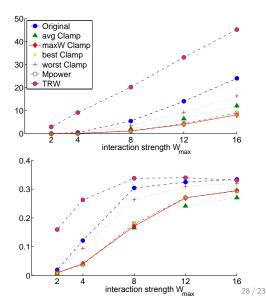
Experiments: general complete graph n = 10, TRW

unary $\theta_i \sim U[-2,2]$, edge $W_{ij} \sim U[0, W_{max}]$

Error of estimate of $\log Z$

Note regular singleton potentials

Avg ℓ_1 error of singleton marginals



$$p(x) = \frac{1}{Z} \exp\left(\sum_{c \in C} \theta_c(x_c)\right)$$

Suppose V is split into observed variables Y = y and unobserved variables X_U so $x = (x_u, y), x_u \in \mathcal{X}_u$

•
$$p(x_u|y) = \frac{p(x_u,y)}{p(y)} = \frac{p(x_u,y)}{\sum_{x'_u \in \mathcal{X}_u} p(x'_u,y)}$$

- This is just a new smaller MRF with modified potentials on the variable set X_U
- New partition function to normalize the new distribution
- Hence the MRF framework is rich enough to handle conditioning
- When we discuss MRFs, they might or might not have been based on conditioning on variables