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Background: A variational approximation

Recall p(x) =
1

Z
exp(θ · x)

Exact inference may be viewed as optimization,

logZ = max
µ∈M

[ θ · µ+ S(µ) ]

M is the space of marginals that are globally consistent, S is
the (Shannon) entropy

Bethe makes two pairwise approximations,

logZB = max
q∈L

[ θ · q + SB(q) ]

L is the space of marginals that are pairwise consistent, SB is
the Bethe entropy approximation
Loopy Belief Propagation finds stationary points of Bethe
On acyclic models, Bethe is exact ZB = Z
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Background: A variational approximation

Exact inference may be viewed as optimization,

logZ = max
µ∈M

[ θ · µ+ S(µ) ]

= −min
µ∈M
FG (µ)

where FG is the Gibbs free energy

Bethe makes two pairwise approximations,

logZB = max
q∈L

[ θ · q + SB(q) ]

= −min
q∈L
F(q)

where F is the Bethe free energy

[YFW01,H02] showed that stable fixed points of LBP
correspond to local minima of the Bethe free energy F
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Other methods to minimize Bethe free energy F

LBP may be viewed as an algorithm to try to minimize F
But may not converge, or may converge only to a local
minimum

Spurred much effort to find convergent algorithms such as

Gradient methods [WT01]
Double loop methods, e.g. CCCP [Yui02] or [HAK03]

But still only to a local optimum, no time guarantee

For binary pairwise models

Recent algorithm guaranteed to converge in polynomial time
to an approximately stationary point of F [Shi12], restrictions
on topology
Our algorithm guaranteed to return an ε-approximation to the
global optimum [WJ14]
To our knowledge, no previously known methods guaranteed to
return or approximate the global optimum
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Bethe pseudo-marginals in the local polytope

logZB = −min
q∈L
F(q) = −min

q∈L
[ −θ · q − SB(q) ]

Must identify q(x) ∈ L that minimizes F

q defined by singleton pseudo-marginals qi = p(Xi = 1) ∀i ∈ V
and pairwise µij ∀(i , j) ∈ E . Local polytope constraints imply

µij =

[
p(Xi = 0,Xj = 0) p(Xi = 0,Xj = 1)
p(Xi = 1,Xj = 0) p(Xi = 1,Xj = 1)

]
=

[
1 + ξij − qi − qj qj − ξij

qi − ξij ξij

]
with constaint that all terms ≥ 0⇒ ξij ∈ [max(0, qi + qj − 1),min(qi , qj)]

[WT01] showed:

Minimizing F , can solve explicitly for ξij(qi , qj ,Wij)

Here Wij is the weight of the edge (attractive/repulsive)

Hence sufficient to search over (q1, . . . , qn) ∈ [0, 1]n, but how?
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Our approach: a mesh over Bethe pseudo-marginals

We discretize the space (q1, . . . , qn) ∈ [0, 1]n with a provably
sufficient mesh M(ε), fine enough s.t. optimum discretized point
q∗ has F(q∗) ≤ minq∈LF(q) + ε
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Key ideas to approximate log ZB to within ε

Discretize to construct a provably sufficient mesh M(ε):

How guarantee F(q∗) ≤ minq∈L F(q) + ε?
How search the large discrete mesh efficiently?

Developed two approaches:

curvMesh bounds curvature [WJ13]
gradMesh bounds gradients - typically much better (orders of
magnitude) [WJ14]

If original model attractive, i.e. Wij > 0 ∀(i , j) ∈ E
(submodular cost functions), then show the discretized
multi-label problem is submodular [WJ13,KKL12]

Hence, can be solved via graph cuts [SF06]
O(N3) where N =

∑
i∈V Ni points in dim i [cf.

∏
i∈V Ni ]

Obtain FPTAS with gradMesh, N = O
(
nmW

ε

)
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First bound the locations of stationary points

For general edge types (associative or repulsive), let
Wi =

∑
j∈N(i):Wij>0Wij , Vi = −

∑
j∈N(i):Wij<0Wij

Theorem (WJ13)

At any stationary point of the Bethe free energy,
σ(θi − Vi ) ≤ qi ≤ σ(θi + Wi )

Developed an algorithm (Bethe bound propagation BBP) that
iteratively improves these bounds

[MK07] already had a similar algorithm, finds ranges of
possible beliefs in LBP - bit slower but typically better

Use this to preprocess model to yield a smaller orthotope

reduces search space directly
allows a coarser mesh

8 / 17



Bethe free energy landscape (stylized)

Red dot shows the global optimum, we might return the green dot
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Curvature: all terms of the Hessian Hij = ∂2F
∂qi∂qj

Hii = − di − 1

qi (1− qi )
+
∑

j∈N(i)

qj(1− qj)

Tij
≥ 1

qi (1− qi )
,

Hij =

{
qiqj−ξij

Tij
(i , j) ∈ E

0 (i , j) /∈ E , i 6= j .

where di is the degree of Xi in the model, and

Tij = qiqj(1−qi )(1−qj)−(ξij−qiqj)2 ≥ 0, equality iff qi or qj ∈ {0, 1}

Leads to bound on max second derivative in any direction
(curvMesh)

qiqj − ξij term is negative for an attractive edge, hence obtain
the submodularity result
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gradMesh: analyze first derivatives of F

∂F
∂qi

= −θi + log
(1− qi )

di−1

qdi−1i

∏
j∈N(i)(qi − ξij)∏

j∈N(i)(1 + ξij − qi − qj)
[WT01]

Theorem (WJ14)

−θi + log qi
1−qi −Wi ≤ ∂F

∂qi
≤ −θi + log qi

1−qi + Vi

Upper and lower bounds are separated by a constant, and
both are monotonically increasing with qi

Within our search space, allows us to bound∣∣∣∂F∂qi ∣∣∣ ≤ Di := Vi + Wi =
∑

j∈N(i) |Wij |
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gradMesh: search over purple region
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gradMesh: complexity

In search space,

∣∣∣∣∂F∂qi
∣∣∣∣ ≤ Di := Vi + Wi =

∑
j∈N(i)

|Wij |

We can apportion ε error among n variables

Simple method: each gets ε
n

Need gradienti .stepi ≈ ε
n .

Hence number of mesh points in dimension i ,

Ni ≈
1

stepi
≈ n

ε
.gradienti = O

n

ε

∑
j∈N(i)

|Wij |


Hence N =

∑
i Ni = O

(
n
εmW

)
Various methods in paper show how to improve performance
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Comparison of methods: left ε = 1, right ε = 0.1; (when fixed, W = 5, n = 10)
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Example where LBP fails to converge, gradMesh works well

Power network of
transformers

Xi ∈ {stable,
fail}
Attractive
edges between
transformers

Would like to
rank by
marginal
probability of
failure p(Xi )
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Recap

The Bethe approximation is often strikingly accurate.
New results:

Novel formulation of the Hessian of the Bethe free energy F
Bounds on derivatives and locations of optima

First method guaranteed to return ε-approx global optimum
logZB , allows its accuracy to be tested rigorously

Provides benchmark against which to judge other heuristics
(LBP, HAK etc.)

Useful in practice for small problems

FPTAS for attractive models, was open theoretical question

Thank you!
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