## Clamping Variables and Approximate Inference

### Adrian Weller



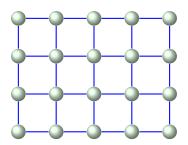
Slides and full paper at www.cs.columbia.edu/~adrian

Work with Tony Jebara, Columbia University

UCL CSML Seminar Part 1, March 27 2015

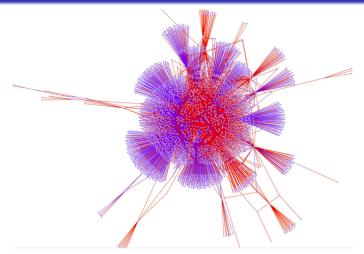
## Motivation: undirected graphical models

- Powerful way to represent relationships across variables
- Many applications including: computer vision, social network analysis, deep belief networks, protein folding...
- In this talk, focus on binary pairwise (Ising) models



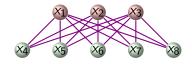
Example: Grid for computer vision (attractive)

## Motivation: undirected graphical models



Example: Part of epinions social network (general)

## Motivation: undirected graphical models



Example: Restricted Boltzmann machine (general)

A fundamental problem is marginal inference

Estimate marginal probability distribution of one variable

$$p(x_1) = \sum_{x_2,...,x_n} p(x_1,x_2,...,x_n)$$

- Closely related to computing the partition function
- Computationally intractable, focus on approximate methods
- Will show that combining approximate methods with clamping can be very fruitful for marginal inference

# Outline: Clamping can be very helpful

- 1. Motivation
- 2. Background on inference and clamping



Combining clamping variables with variational inference, we obtain

- 3. Strong theoretical results
- 4. Promising empirical results

## Background: Binary pairwise models

- Binary variables  $X_1, \ldots, X_n \in \{0, 1\}$
- ullet Pairwise potentials heta
- Write x for one complete configuration of all variables,  $\theta \cdot x$  for its score
- Probability distribution given by

$$p(x) = \frac{1}{Z} \exp(\theta \cdot x)$$

To ensure probabilities sum to 1, need normalizing constant

$$Z = \sum_{x} \exp(\theta \cdot x)$$

 Z is called the partition function, a fundamental quantity we'd like to compute or approximate

# Background: A variational approximation



Recall 
$$p(x) = \frac{1}{Z} \exp(\theta \cdot x)$$

Exact inference may be viewed as optimization,

$$\log Z = \max_{\mu \in \mathbb{M}} [\theta \cdot \mu + S(\mu)]$$

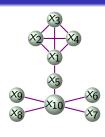
 $\mathbb{M}$  is the space of marginals that are *globally consistent*, S is the (Shannon) entropy

• Bethe makes two pairwise approximations,

$$\log Z_B = \max_{q \in \mathbb{L}} [\theta \cdot q + S_B(q)]$$

 $\mathbb{L}$  is the space of marginals that are *pairwise consistent*,  $S_B$  is the Bethe entropy approximation

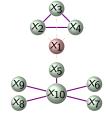
- Loopy Belief Propagation finds stationary points of Bethe
- On acyclic models, Bethe is exact  $Z_B = Z$



## Example 'lamp' graph

To compute the partition function Z, can enumerate all states and sum

| $x_1x_2\ldots x_{10}$ | score | exp(score) |
|-----------------------|-------|------------|
| 0 00                  | 1     | 2.7        |
| 0 01                  | 2     | 7.4        |
|                       |       |            |
| 0 11                  | 1.3   | 3.7        |
| 1 00                  | -1    | 0.4        |
| 101                   | 0.2   | 1.2        |
|                       |       |            |
| $1\ 1\ \dots 1$       | 1.8   | 6.0        |
| Total Z =             |       | 47.1       |
|                       |       |            |



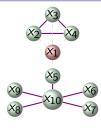
Can split Z in two: clamp variable  $X_1$  to each of  $\{0,1\}$ , then add the two sub-partition functions:

$$Z = Z|_{X_1=0} + Z|_{X_1=1}$$

When clamp a variable, remove it from the graph

| $X_1X_2\ldots X_{10}$ | score | exp( <i>score</i> ) |      |
|-----------------------|-------|---------------------|------|
| 0 0 0                 | 1     | 2.7                 |      |
| 0 01                  | 2     | 7.4                 |      |
|                       |       |                     |      |
| 0 11                  | 1.3   | 3.7                 | 27.5 |
| 1 00                  | -1    | 0.4                 |      |
| 1 01                  | 0.2   | 1.2                 |      |
|                       |       |                     |      |
| 1 1 1                 | 1.8   | 6.0                 | 19.6 |
| Total $Z =$           | ·     | 47.1                |      |

$$p(X_1 = 1) = \frac{Z|_{X_1 = 1}}{Z}$$



Can split Z in two: clamp variable  $X_1$  to each of  $\{0,1\}$ , then add the two sub-partition functions:

$$Z = Z|_{X_1=0} + Z|_{X_1=1}$$

When clamp a variable, remove it from the graph

 After removing the clamped variable, if the remaining sub-models are acyclic then can find sub-partition functions efficiently (BP, Bethe approximation is exact on trees)



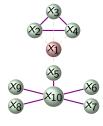
Can split Z in two: clamp variable  $X_1$  to each of  $\{0,1\}$ , then add the two sub-partition functions:

$$Z = Z|_{X_1=0} + Z|_{X_1=1}$$

When clamp a variable, remove it from the graph

- After removing the clamped variable, if the remaining sub-models are acyclic then can find sub-partition functions efficiently (BP, Bethe approximation is exact on trees)
- If not,
  - Can repeat: clamp and remove variables until acyclic, or
  - Settle for approximate inference on sub-models

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1}$$



Can split Z in two: clamp variable  $X_1$  to each of  $\{0,1\}$ , then add the two sub-partition functions:

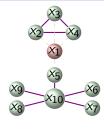
$$Z = Z|_{X_1=0} + Z|_{X_1=1}$$

When clamp a variable, remove it from the graph

- After removing the clamped variable, if the remaining sub-models are acyclic then can find sub-partition functions efficiently (BP, Bethe approximation is exact on trees)
- If not,
  - Can repeat: clamp and remove variables until acyclic, or
  - Settle for approximate inference on sub-models

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1}$$

Will this always lead to a better estimate than approximate inference on the original model?



Can split Z in two: clamp variable  $X_1$  to each of  $\{0,1\}$ , then add the two sub-partition functions:

$$Z = Z|_{X_1=0} + Z|_{X_1=1}$$

When clamp a variable, remove it from the graph

- After removing the clamped variable, if the remaining sub-models are acyclic then can find sub-partition functions efficiently (BP, Bethe approximation is exact on trees)
- If not,
  - Can repeat: clamp and remove variables until acyclic, or
  - Settle for approximate inference on sub-models

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1}$$

Will this always lead to a better estimate than approximate inference on the original model? *Often but not always* 

## A variational perspective on clamping

Bethe approximation

$$\log Z_B = \max_{q \in \mathbb{L}} [\theta \cdot q + S_B(q)]$$

ullet Observe that when  $X_i$  is clamped, we optimize over a subset

$$egin{aligned} \log Z_B|_{X_i=0} &= \max_{q\in \mathbb{L}: q_i=0} \left[ \ \theta \cdot q + \mathcal{S}_B(q) \ 
ight] \ \Rightarrow Z_B|_{X_i=0} &\leq Z_B, \ ext{similarly} \ Z_B|_{X_i=1} &\leq Z_B \end{aligned}$$

#### Recap of Notation

| Ζ                                          | true partition function                                                       |
|--------------------------------------------|-------------------------------------------------------------------------------|
| $Z_B$                                      | Bethe optimum partition function                                              |
| $Z_B^{(i)} := Z_B _{X_i=0} + Z_B _{X_i=1}$ | approximation obtained when clamp and sum approximate sub-partition functions |

## Clamping variables: an upper bound on Z

• From before,

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1} \le 2Z_B$$

- Repeat: clamp and remove variables, until remaining model is acyclic, where Bethe is exact
- For example, if must delete 2 variables  $X_i, X_j$ , obtain

$$Z_B^{(ij)} := \sum_{a,b \in \{0,1\}} Z_B|_{X_i=a,X_j=b} \le 2^2 Z_B$$

But sub-partition functions are exact, hence LHS = Z







## Clamping variables: an upper bound on Z

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1} \le 2Z_B$$

- Repeat: clamp and remove variables, until remaining model is acyclic, where Bethe is exact
- Let  $\nu(G)$  be the minimum size of a feedback vertex set

## Theorem (result is tight)

•

$$Z \leq 2^{\nu} Z_B$$

## Clamping variables: an upper bound on Z

•  $Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1} \le 2Z_B$ 

- Repeat: clamp and remove variables, until remaining model is acyclic, where Bethe is exact
- Let  $\nu(G)$  be the minimum size of a feedback vertex set

## Theorem (result is tight)

$$Z \leq 2^{\nu} Z_B$$

## Attractive models: a lower bound on Z

- An attractive model is one with all edges attractive
- Recall definition.

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1}$$

#### Theorem

For an attractive binary pairwise model and any  $X_i$ ,  $Z_B \leq Z_B^{(i)}$ 

Repeat as before: 
$$Z_B \le Z_B^{(i)} \le Z_B^{(ij)} \le \cdots \le Z$$

Corollary (similar proof to earlier result; first proved Ruozzi, 2012)

For an attractive binary pairwise model,  $Z_B \leq Z$ 

## Attractive models: a lower bound on Z

- An attractive model is one with all edges attractive
- Recall definition.

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1}$$

#### Theorem

For an attractive binary pairwise model and any  $X_i$ ,  $Z_B \leq Z_B^{(i)}$ 

Repeat as before: 
$$Z_B \le Z_B^{(i)} \le Z_B^{(ij)} \le \cdots \le Z$$

Corollary (similar proof to earlier result; first proved Ruozzi, 2012)

For an attractive binary pairwise model,  $Z_B \leq Z$ 

 $\Rightarrow$  each clamp and sum can only *improve*  $Z_B$ 

## Experiments: Which variable to clamp?

Compare error  $|\log Z - \log Z_B^{(i)}|$  to original error  $|\log Z - \log Z_B|$  for various ways to choose which variable  $X_i$  to clamp:

- best Clamp best improvement in error of Z in hindsight
- worst Clamp worst improvement in error of Z in hindsight
- avg Clamp average performance
- maxW max sum of incident edge weights  $\sum_{i \in N(i)} |W_{ij}|$
- Mpower more sophisticated, based on powers of related matrix



## Experiments: attractive random graph n = 10, p = 0.5

unary  $\theta_i \sim U[-2,2]$ , edge  $W_{ij} \sim U[0, W_{max}]$ 

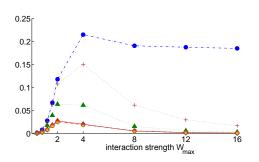
Error of estimate of  $\log Z$ 

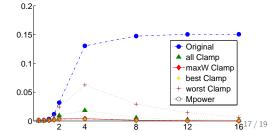
#### Observe

- Clamping any variable helps significantly
- Our selection methods perform well

Avg  $\ell_1$  error of singleton marginals

Using Frank-Wolfe to optimize Bethe free energy





## Experiments: general random graph n = 10, p = 0.5

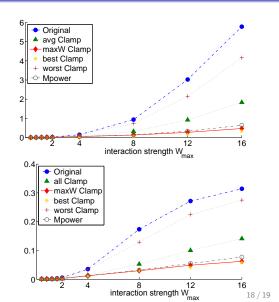
unary  $\theta_i \sim U[-2, 2]$ , edge  $W_{ij} \sim U[-W_{max}, W_{max}]$ 

Error of estimate of  $\log Z$ 

Results remain promising for higher *n* 

Avg  $\ell_1$  error of singleton marginals

Using Frank-Wolfe to optimize Bethe free energy



## Recap of theoretical results

- Simple observation on variational view of clamping variables gives  $Z_B^{(i)} \leq 2Z_B$
- Repeat until graph is acyclic, where Bethe is exact
- Yields effective upper bound on Z

#### For attractive models,

- Theorem:  $Z_B \leq Z_B^{(i)}$  for any  $X_i$
- Then argue as above to yield simple new proof of  $Z_B \leq Z$
- $\bullet$  Clamping any variable and summing can only improve  $Z_B$
- To prove Theorem above, derive stronger result on convexity of function combining conditioned Bethe optimum with singleton entropy, ask if interested

#### Thank you!

Slides and full paper at www.cs.columbia.edu/~adrian

## Supplementary material

# Extra slides for questions or further explanation

# Clamping variables: strongest result for attractive models

$$\log Z_B = \max_{q \in \mathbb{L}} \left[ \theta \cdot q + S_B(q) \right]$$

- For any variable  $X_i$  and  $x \in [0,1]$ , let  $q_i = q(X_i = 1)$  and  $\log Z_{Bi}(x) = \max_{q \in \mathbb{L}: q_i = x} \left[ \ \theta \cdot q + S_B(q) \ \right]$
- $Z_{Bi}(x)$  is 'Bethe partition function constrained to  $q_i = x$ ' Note:  $Z_{Bi}(0) = Z_B|_{X_i=0}, \ Z_{Bi}(x^*) = Z_B, \ Z_{Bi}(1) = Z_B|_{X_i=1}$

## Clamping variables: strongest result for attractive models

$$\log Z_B = \max_{q \in \mathbb{L}} \left[ \theta \cdot q + S_B(q) \right]$$

- For any variable  $X_i$  and  $x \in [0,1]$ , let  $q_i = q(X_i = 1)$  and  $\log Z_{Bi}(x) = \max_{q \in \mathbb{L}: q_i = x} \left[ \ \theta \cdot q + S_B(q) \ \right]$
- $Z_{Bi}(x)$  is 'Bethe partition function constrained to  $q_i = x$ ' Note:  $Z_{Bi}(0) = Z_B|_{X_i=0}, \ Z_{Bi}(x^*) = Z_B, \ Z_{Bi}(1) = Z_B|_{X_i=1}$
- Define new function,

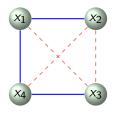
$$A_i(q_i) := \log Z_{Bi}(q_i) - S_i(q_i)$$

Theorem (implies all other results for attractive models)

For an attractive binary pairwise model,  $A_i(q_i)$  is convex

• Builds on derivatives of Bethe free energy from [WJ13]

## Example: here clamping any variable worsens $Z_B$ estimate



Blue edges are attractive with edge weight +2 Red edges are repulsive with edge weight -2 No unary potentials

(performance is only slightly worse with clamping)

## Experiments: attractive complete graph n = 10, TRW

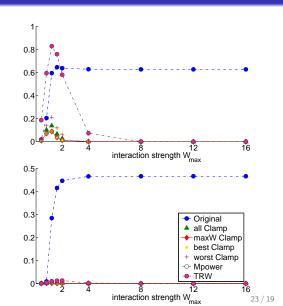
unary  $\theta_i \sim U[-0.1, 0.1]$ , edge  $W_{ij} \sim U[-W_{max}, W_{max}]$ 

Error of estimate of  $\log Z$ 

Note low unary potentials

Avg  $\ell_1$  error of singleton marginals

Clamping a variable 'breaks symmetry' and overcomes TRW advantage



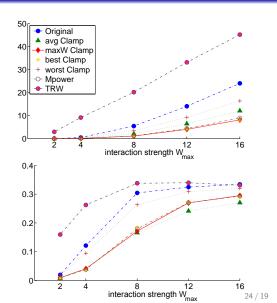
## Experiments: general complete graph n = 10, TRW

unary  $\theta_i \sim U[-2, 2]$ , edge  $W_{ij} \sim U[0, W_{max}]$ 

Error of estimate of  $\log Z$ 

Note regular singleton potentials

Avg  $\ell_1$  error of singleton marginals



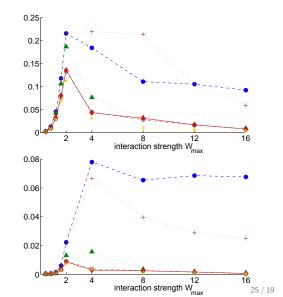
## Experiments: attractive random graph n = 50, p = 0.1

unary  $\theta_i \sim U[-2, 2]$ , edge  $W_{ij} \sim U[0, W_{max}]$ 

Error of estimate of  $\log Z$ 

'worst Clamp' performs worse here due to suboptimal solutions found by Frank-Wolfe

Avg  $\ell_1$  error of singleton marginals



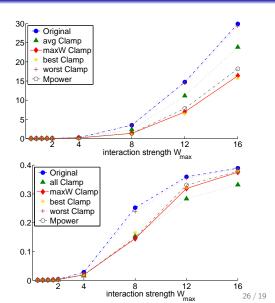
## Experiments: general random graph n = 50, p = 0.1

unary  $\theta_i \sim U[-2,2]$ , edge  $W_{ij} \sim U[-W_{max}, W_{max}]$ 

Error of estimate of  $\log Z$ 

Performance still good for clamping just one variable

Avg  $\ell_1$  error of singleton marginals



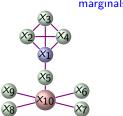
## Experiments: attractive 'lamp' graph

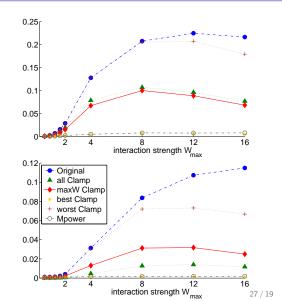
unary  $\theta_i \sim U[-2, 2]$ , edge  $W_{ij} \sim U[0, W_{max}]$ 

Error of estimate of  $\log Z$ 

Mpower performs well, significantly better than maxW

Avg  $\ell_1$  error of singleton marginals





## Experiments: general 'lamp' graph

unary  $\theta_i \sim U[-2,2],$ edge  $W_{ij} \sim U[-W_{max}, W_{max}]$ 

Error of estimate of  $\log Z$ 

Mpower performs well, significantly better than maxW

Avg  $\ell_1$  error of singleton marginals



