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Abstract

Network structure often contains information that can be useful for ranking algorithms.
We incorporate network structure by formulating ranking as marginal inference in a
Markov random field (MRF). Though inference is generally NP-hard, we apply a
recently-developed polynomial-time approximation scheme (PTAS) to infer Bethe pseu-
domarginals. As a case study, we investigate the problem of ranking failing transformers
that are physically connected in a network. Compared to independent score-based ranking,
the current state of the art, we show superior ranking results. We conclude by discussing
an empirical phenomenon of critical parameter regions, with implications for new algo-
rithms.

1 Introduction

Many important data-sets involve networks: people belong to social networks, webpages are joined in a link
graph, and power utilities are connected in a grid. Often, these networks describe how influence propagates
within the population. For instance, edges may imply conditional dependence and independence of certain
nodes which encourages us to model such data-sets as Markov random fields. The goal of this article is to
rank nodes in such a network, or Markov random field. Rather than using only node-attributes and ranking
each node in isolation, as some state-of-the-art approaches [1, 2], we wish to infer marginal probabilities
within the network.

Marginal inference on graphical models with a large tree-width is problem that is NP-hard [3] and even
NP-hard to approximate [4]. However, a method was recently developed to efficiently infer Bethe pseudo-
marginals on a large dense network of binary variables [5]. Previous work developed a polynomial-time
approximation scheme using Bethe free energy that applies whenever pairwise interactions are submodular
(equivalently associative or ferromagnetic). In this article, we further develop this approach and explore its
application to infer which transformers in a power network are most likely to fail. This problem was initially
studied by [6], which estimated the probability for each transformer to fail on its own. However, transform-
ers are physically connected to one another. Therefore, the failure of one increases load on its neighbors,
causing them in turn to be more likely to fail. Inferring posterior failure probabilities through the network
allows us to then rank the transformers to determine which ones are most at risk to then give the list of most
high priority transformers that a utility company needs to repair first.

We have a network topology and independent scores for each node, which are outputs of a RankBoost model
run at the utility company. We use the PTAS developed in [5] to search for optimal MRF parameters and to
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predict rankings more accurately than the independent scores. While we developed and tested algorithms on
real data, in this paper, we present experiments on simulated data designed to mimic the statistics of the real
data. Our simulations are on a smaller scale, to facilitate comparisons with exact marginals.

Section 2 describes ranking model; section 3 describes the details of the PTAS; section 4 highlight empirical
results, section 5 reviews related work and section 6 concludes.

2 Model

To each item in the dataset we associate a binary variable indicating its relevance. The topology of the MRF
with vertices V and edges E is the same that of the underlying data points. First consider the overcomplete
parameterization:

p(x|θ) =
1

Z
exp {−E(x|θ)}

E(x|θ) = −
∑
i∈V

θi(xi)−
∑

(i,j)∈E

θij(xi, xj) xi, xj ∈ {0, 1} (1)

We derive θi and θij from prespecified scores and model assumptions of pairwise interactions. We have
scores si for each node, so we set θi(0) = 0, θi(1) = si. Next, we assume that edge potentials are homo-
geneous. In our problem, edges are physical wires, and we assume wires throughout the city have similar
characteristics. Moreover, if xi and xj are neighbors, the events xi = 1, xj = 0 and xi = 0, xj = 1 are
symmetric: the wire does not care which end fails first. Thus, we write

θij(xi, xj) =

(
α β
β γ

)
for each edge potential. Submodularity requires α+ γ > 2β. We can further simplify (1) to

E(x|θ) = α−
∑
i∈V

(si + b)xi −
∑

(i,j)∈E

wxixj (2)

b = β − α
w = α+ γ − 2β = γ − β − b

So α is a constant independent of x. Therefore, to derive probabilities from homogeneous potentials of the
form (2), it suffices to specify a bias b and an edge weight w. The higher the value of w, the more highly
correlated each pair along an edge will be. For a fixed w, the parameter b trades off weight between α,
favoring both nodes to function, and γ, favoring both nodes to fail.

3 Discrete Bethe Pseudomarginals

Algorithm 1, which also describes the method in [5] outlines the PTAS to find the global minimum of the
Bethe free energy up to additive error ε. We use the parameterization in [11] which requires only singleton
(not pairwise) marginals:

FB(q) =
∑
i∈V
−θiqi + (δi − 1)S1(qi) +

∑
(i,j)∈E

− (Wijξij + S2(qi, qj)) (3)
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Algorithm 1 Discrete optimization of the Bethe free energy
Compute bounds {Ai, Bi}Ni=1 away from 0, 1 of Bethe pseudomarginals using Eqs. (23) to (25) in [7].
for i := 1 : N do . Place mesh points

Compute mesh size γ = f(n,W, ε) using max-eigenvalue bound in [5].
Put Ki :=

⌈
1−Bi−Ai

γ

⌉
Compute mesh points {qi(k) := Ai + kγ}Ki

k=1

Alternatively, compute adaptive mesh {qi(k)}Ki

k=1 using [8], with Ki determined by the algorithm.
end for

. Construct multi-label discrete MRF; decompose terms of FB
Put ηi(k) := −θiqi(k) + (δi − 1)S1(qi(k)) for i ∈ V, k = 1, . . . ,Ki

Put ηij(k, `) := −Wijξij(qi(k), qj(`))− S2(qi(k), qj(`)) for (i, j) ∈ E , k = 1, . . . ,Ki, ` = 1, . . . ,Kj

Reduce the MRF {ηi(·), ηij(·)} to a binary MRF using [9].
Solve the binary MRF with a graph cut using [10].
Decode the multi-label solution, and the corresponding mesh point qi(k) for each i ∈ V from the cut.

where δi is degree of node i, qi is a singleton pseudomarginal, θi andWij are singleton and pairwise weights,
S1 and S2 are singleton and pairwise entropy functions, and each ξij is the unique root of a quadratic function
of Wij, qi, and qj . For details on this notation, see [11].

We first bound the minimizer of the Bethe free energy in each dimension, using an iteration derived in [7].
We then place a grid between these bounds such that the minimum of FB on the grid points is no more than ε
from the global minimum. Conceptually, there are exponentially many grid points. But we can find the grid
point with lowest energy in polynomial time by solving a submodular multi-label min-cut (negated MAP)
problem. To do this, we decompose the terms of (3) along the nodes and edges of G and evaluating the
singleton entropies and pairwise entropies along edges, resulting in a multi-label MRF. If the original model
is submodular, then this discrete MRF is as shown in [5]. We can solve the final problem as a graph cut [10].

In work under review [8], a more efficient adaptive mesh was derived. In all, with the mesh points, dis-
cretization, and final MAP inference, the worst case runtime of this algorithm is O((W |V||E|/ε)3) where
W is the maximum weight on an edge.

Due to runtime, we report pseudomarginals as the minimizer of FB . A method with guaranteed error bounds
is instead to compute µ(xi = 1) = exp {−minFB(xi = 1) + minFB} where −FB(xi = 1) is the Bethe
free energy conditioned on xi = 1. This requires computing N + 1 partition functions, but has the benefit
of inheriting ε-close guarantees. Note that this is still not a bound from the true marginals, since the Bethe
free energy can be far from the true (Gibbs) free energy.

4 Results

We designed a simulation that reproduced summary statistics of our real data. We drew independent node
scores from a mixture of Gaussians and a scale free network (100 nodes, 200 edges) from the Barabsi-Albert
model [12]. We parameterized the MRF (2) with w = 4, 8, 12 and b = 0,−4,−8 accordingly to compensate
so that the overall failure probabilities remained constant. Since we have a generative model, we evaluated
algorithms on expected AUC under the true distribution, instead of the more common one-sample AUC. We
used a simple Monte Carlo approximation with 105 samples, which was sufficient for error to be negligible
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Figure 1: Top: Expected AUCs. Bottom: Entropies of singleton marginals. Both: Horizontal axis is
b, vertical b. Redder means higher values. A phase transition characteristic of Ising models appears as a
diagonal line. An × marks the parameters of the true distribution prior to rejection sampling. See text for
details.

w = 4, b = 0 w = 8, b = −4 w = 12, b = −8
Independent 0.5761 0.6352 0.5984

Bethe 0.8573, b = −6, w = 10 0.8683, b = −3.5, w = 11.5 0.8557, b = 1, w = 11
Gibbs 0.8575, b = −6, w = 10 0.8693, b = 0.5, w = 7.5 0.8579, b = 0.5, w = 11.5
J. Tree 0.8575, b = −6, w = 10 0.8693, b = 0.5, w = 7.5 0.8580, b = 1, w = 11

BP 0.8576, b = −6, w = 10 0.8693, b = 0.5, w = 7.5 0.8567, b = 1, w = 11

Table 1: Maximum expected AUC for an algorithm and a data distribution. Marginals outperform ranking
by independent scores. The location of the maximum is generally stable across algorithms, though in one
case our Bethe approximation found a different solution.
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Figure 2: Errors compared to true marginals. Our method has lower maximum error.

for our purposes. To compute the expected AUC, we reject samples which do not contain failures. This
step is required for a well-defined AUC and represents a realistic data model: the model is useful only if we
predict at least one transformer to fail.

With approximate inference, maximum likelihood learning may no longer be consistent [13]. Moreover,
the maximum likelihood model need not be the best ranker. We instead swept the two parameters w and b
and plot the resulting expected AUC in the top row of Figure 1. At each point, we inferred marginals and
plotted the expected AUC of those marginals. We show the trial for w = 12, b = −8, though the others were
qualitatively similar. Table 1 shows values and locations of maximum expected AUC for every trial. An ×
marks the location of the true distribution.

The plots exhibit a mode and phase transition along a line w + c1b = c0. The same phenomena occur in
the other trials and in real data. For parameters far below this line, the marginals approach zero, making
it difficult to discern a ranking. Far above the line, the marginals approach one, with similar problems.
We observe this phenomenon quantitatively in the bottom row of Figure 1, which shows the entropy of
the collection of estimated singleton marginals for each w and b. The regions with highest AUC are also
those with highest entropy, supporting the intuition that the best ranking obtains with evenly-spread marginal
probabilities—not necessarily the true ones.

The sum w + c1b represents the (scaled) total positive bias in the model. In the parameterization (2), both b
and w bias the marginals toward one: a high b increases the marginals on each node, and a high w increases
the marginals for both nodes on a pair. For the Bethe plot (top-left of Figure 1), we fit a least-squares estimate
on the fifty points with highest AUC, all of which are contained in the modal region. This gave c1 = 0.98
and c0 = 12.23 (R2 = 0.994, p = 5.2 × 10−55). Thus, w and b trade off almost one-to-one in order to
maintain a total positive bias of around 12, the modularity of the true model

To check approximation quality, we plotted `1 distances to true marginals in Figure 2. While our Bethe
approximation errs more often, BP makes worse errors, and Gibbs makes the worst errors of all, even with
5 × 107 samples with an equally-long burn-in. The errors of the Bethe approximation do not seem to hurt
the AUC.
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5 Related Work

The work [6] and references therein were the first to apply ranking algorithms for transformer failures. Mod-
eling network effects as MRFs was considered in [14] in a social marketing setting. Their work only studies
local optimization algorithms and maximizes expected profit rather than the AUC. Work in [15] is motivated
by MRFs, but their algorithm ultimately embeds the network in a vector space, which they argue to be useful
for link prediction. Our work focuses on inference, which is more general than link prediction. [16] incor-
porates network structure by propagating independent scores through a similarity network, which resembles
our problem. Although their algorithm converges, they give no other theoretical properties. [17] derive a
random-walk model for ranking authors and documents, which combines social, citation, and authorship
networks. However, their model requires many parameter choices, while ours requires just two.

6 Discussion

We have formulated the network ranking problem as marginal inference in a particular edge-homogeneous,
attractive binary Markov random field. We demonstrated that such accounting of network structure im-
proves the AUC compared to independent scores. We have applied a recently-developed PTAS for marginal
inference to a real-world problem, with encouraging results.

The empirical results uncover some phenomenon and suggest directions for further work. A consistent
feature is a critical line where both AUC and entropy are high. The statistical physics literature has studied
phase transitions in the sense of varying temperature [18]; to our knowledge, a similar phase transition with
respect to a varying external field (our b parameter) has not been studied. Future work could characterize the
location of the critical line, which may generally offer better ranking performance.
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