Base Sums

Given three values n, a, and b, find the smallest $m > n$ such that the sum of the digits of m in base a is the same as the sum of digits of m in base b.

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. There will be a single line of input, with three integers, n ($0 \leq n \leq 10^{16}$), a and b ($2 \leq a < b \leq 36$), all of which will be in base 10.

Output

Output a single integer, m, which is the smallest number greater than n such that the sum of its digits in base a is the same as the sum of its digits in base b. Output m in base 10.

Sample Input

<table>
<thead>
<tr>
<th>Sample Input</th>
<th>Sample Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>66 10 16</td>
<td>144</td>
</tr>
<tr>
<td>24 4 15</td>
<td>90</td>
</tr>
<tr>
<td>9358385 11 32</td>
<td>9437362</td>
</tr>
</tbody>
</table>