

Greater New York **Programming Contest**

Yale University New Haven, CT

D • Pisano Periods

In 1960, Donald Wall of IBM, in White Plains, NY, proved that the series obtained by taking each element of the Fibonacci series modulo m was periodic.

For example, the first ten elements of the *Fibonacci* sequence, as well as their remainders modulo 11. are:

The sequence made up of the remainders then repeats. Let $k \, (m)$ be the length of the repeating subsequence; in this example, we see k(11) = 10.

Wall proved several other properties, some of which you may find interesting:

- \triangleright If m > 2, k (m) is even.
- For any even integer n > 2, there exists m such that k(m) = n.
- \triangleright k(m) \leq m² 1
- \triangleright k(2ⁿ) = 3 * 2⁽ⁿ⁻¹⁾
- \triangleright k(5ⁿ) = 4 * 5ⁿ
- $> k(2 * 5^n) = 6n$
- \rightarrow If n > 2, k(10ⁿ) = 15 * 10⁽ⁿ⁻¹⁾

For this problem, you must write a program that calculates the length of the repeating subsequence, k (m), for different modulo values m.

Input

The first line of input contains a single integer P, (1 $\leq P \leq$ 1000), which is the number of data sets that follow. Each data set is a single line that consists of two space separated integer values **N** and **M**. **N** is the data set number. \mathbf{M} is the modulo value (2 <= m <= 1,000,000).

Output

For each data set there is one line of output. It contains the data set number (N) followed by a single space, followed by the length of the repeating subsequence for M, k(M).

Yale University New Haven, CT

Sample Input	Sample Output
5	1 6
1 4	2 20
2 5	3 10
3 11	4 15456
4 123456	5 332808
5 987654	