Greater New York event spansors
acim Programming Contest i

I) 2 01 1 Adelphi University
Garden City, NY

C ¢ Programming the EDSAC

:Ft\J

ao

The world's first full-scale, stored-program, electronic, digital computer was the EDSAC (Electronic
Delay Storage Automatic Calculator). The EDSAC had an accumulator-based instruction set,
operating on 17-bit words (and 35-bit double words), and used a 5-bit teletypewriter code for input
and output.

The EDSAC was programmed using a very simple assembly language: a single letter opcode
followed by an unsigned decimal address, followed by the the letter ‘F' (for full word) or ‘D' (for double
word). For example, the instruction “A 128 F” would mean “add the full word at location 128 to the
accumulator’, and would be assembled into the 17-bit binary value, 11100000100000000,
consisting of a 5-bit opcode (11100 = “add”), an 11-bit operand (00010000000 = 128), and a single
0 bit denoting a full word operation (a 1 bit would indicate a double word operation).

Although arithmetic on the EDSAC was fixed point two's complement binary, it was not mere integer
arithmetic (as is common with modern machines). The EDSAC hardware assumed a binary point
between the leftmost bit and its immediate successor. Thus the hardware could handle only values in
therange -1.0 <= x < 1.0. For example:

Value Binary Representation
-1.0 10000000000000000

¥ 01000000000000000

%4 01100000000000000

-3 11000000000000000

As you can see, the largest possible positive value was:

01111111111111111 = 0.9999847412109375

and the smallest possible positive value was:

00000000000000001 = 27** = 0.0000152587890625

(This also happens to be the increment between successive values on the EDSAC).

By a curious coincidence (or an elegant design decision), the opcode for the add operation (11100)
was the same as the teleprinter code for the letter ‘A’. The opcode for subtract was the same as the
teleprinter code for ‘s’ (01100), and so on. This simplified the programming for the assembler
(which, incidentally, was a mere 31 instructions long). The EDSAC teleprinter alphabet was
‘PQWERTYUIOJ#SZK*?F@D!HNM&LXGABCV” (with ‘P’ = 00000, ‘Q' = 00001, and so on, up to V'’
=11111).

Greater New York Regional C * Programming the EDSAC

Greater New York event spansors
dCimn -

Programming Contest
!Q) 2 01 1 Adelphi University
Garden City, NY

el

[{rml|
b
|;:”||
‘1-..
&

Unfortunately, the EDSAC assembler had no special directives for data values. On the other hand,
there was no reason that ordinary instructions couldn't be used for this, thus, an EDSAC programmer
desiring to reserve space for the constant 3 (represented as 01100000000000000) would use the
instruction “s 0 F” and for ' /5 (which is approximately represented as 00101010101010101) “T
682 D”, and so on.

Your job is to write a program that will translate decimal input values into the appropriate EDSAC
instructions.

Input

The first line of input contains a single integer P, (1 < P <1000), which is the number of data sets that
follow. Each data set is a single line that consists of two space separated values N and D. N is the

data set number. D is the decimal number of the form sd.ddd...., where s is an optional minus sign,
and d is any decimal digit (0-9). There will be at least 1 and at most 16 digits after the decimal point.

Output

For each data set there is one line of output. It contains the data set number (N) followed by a single
space, followed by the EDSAC instruction necessary to specify the given constant. The instruction
should be printed as follows: the “opcode” character followed by a space followed by the operand (as
a non-negative decimal integer) followed by a space followed by an ‘F’ or ‘D’ (as appropriate). If the
constant cannot be represented exactly in 17 bits, the value is to be rounded toward zero (up for
negative, down for positive numbers). If the input value D is notinthe range -1.0 <= D < 1.0, the
string “INVALID VALUE” should be printed instead of an EDSAC instruction.

Sample Input Sample Output

16 1 1ITO0F

1 0.5 2 & 0 F

2 -0.5 3?2 0F

3 -1.0000000 4 Q 1228 D

4 0.1 5P 0D

5 0.0000152587890625 6 PO F

6 0.0000152587890624 7 P 0D

7 0.0000152587890626 8 vV 2047 D

8 -0.0000152587890625 9P 0F

9 -0.0000152587890624 10 v 2047 D

10 -0.0000152587890626 11 * 2047 D

11 0.9999999999999999 12 2 0 D

12 -0.9999999999999999 13 INVALID VALUE
13 -5.3 14 INVALID VALUE
14 9.1 15 INVALID VALUE
15 -1.0000000000000001 16 T 54 F

16 0.31415926

Greater New York Regional C * Programming the EDSAC

