
DISCRETE MATH1  W3203  Quiz 2
open book

SOLUTIONS 
_________________________________
Your Name (2 pts for legibly PRINTING your name)

   Problem Points Score 
 your name   2

1   20
2   20
3   18
4   20
5   20

_______________________
Total      100

SUGGESTION:  Do the EASIEST problems first!

HINT:  Some of the solution methods involve highschool 
math as well as new methods from this class.

1 An example of the Reasonable Person Principle:  A reasonable student expects to lose a lot of credit for 
neglecting to EXPLAIN an answer.   Omit explanations at your own risk. 
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1a (10 pts).  Prove the following inequality: 

2 n + 1 −
1

n + 1
> 2 n   for all n ≥ 0.

PROOF:

  
2 n + 1 −

1
n + 1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2
=  4(n + 1) − 4 +

1
n + 1

= 4n + 1
n + 1

 >  4n = 2 n( )2

1b (10 pts).  Now prove the following:

     

1

1
+

1

2
++

1

n
< 2 n for all  n ≥ 1.

PROOF by induction: Basis(n=1):  
1
1

= 1 < 2 1 = 2

Ind Hyp:  Assume true for n.

Ind Step:
    

1

1
++

1

n +1

 

    

=
1

1
++

1

n
+

1

n +1
< 2 n +

1

n + 1

< 2 n +1  by part 1a.
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2 (20 pts).  Prove the following:

k
n
k
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

k = 0

n
∑ = n2n−1  for  n ≥ 0.

PROOF 1:    

   
k

n
k

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

k=0

n

∑ = k
nk

k !k=0

n

∑ = n
(n−1)k−1

k −1( )!k=0

n

∑ = n
n−1
k −1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

k=0

n

∑ = n2n−1

PROOF 2:  Basis (n=0):  Both sides are zero.
Ind Hyp:  Assume true for n.
Ind Step:  

k n +1
k

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
k = 0

n +1
∑ = k n
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k
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k = 0
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k
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⎠ ⎟ 

k = 0
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∑  =  k n
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⎝ ⎜ ⎞ 

⎠ ⎟ 
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k
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n
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⎦ 
⎥ 
⎥ 
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k
⎛ 
⎝ ⎜ ⎞ 
⎠ ⎟ 

k = 0

n
∑

= j n
j

⎛ 
⎝ ⎜ ⎞ 
⎠ ⎟ 

j = 0

n
∑ + n

j
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⎝ ⎜ ⎞ 
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n
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k
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k = 0

n
∑  

=  n2n−1 + 2n + n2n−1  =  n2n + 2n  by  Ind  Hyp
=  n + 1( )2n
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3 (18 pts)  We define the set  S  of binary strings recursively:

B. 1 ∈S
R.  if s ∈S, then s01,s10  and  s−1(reverse of s) ∈S

 

 
3a (5).  Show step-by-step how to construct a string in  S  with three 
consecutive  1's.  
SOLUTION:  1→ 110 → 011→ 01110

3b (13).  Prove that no string in S begins or ends in 111.
BASIS:  1 does not begin or end in 111.
IND HYP:  Assume that no string derived in  ≤n  steps begins 
or ends in 111.
IND STEP:  Consider a string  s ∈S , that begins or ends in 
111, and whose derivation takes  n+1  steps.  
If the last step of that derivation was reversal, then  s-1  was 
derived in only  n  steps, and cannot begin or end in 111, by 
the Ind Hyp.  Thus,  s  cannot begin or end in 111. 
Otherwise, either s = t01, or s = t10, where t ∈S .  
Thus, s ends either in  x01 or in x10, not in 111.  
Since  t  was derived in at most  n  steps, it cannot start in 111.  
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4 (20 pts).  Consider the following recursion.

    

b0 = 1

bn+1 =
n
0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
bn +

n
1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
bn−1 +

n
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
bn−2 ++

n
n

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
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4a (10). Calculate b4 . 
SOLUTION:

b1 = 0
0
⎛ 
⎝ ⎜ ⎞ 
⎠ ⎟ b0 = 1 ⋅1 = 1 b2 = 1

0
⎛ 
⎝ ⎜ ⎞ 
⎠ ⎟ b1 + 1

1
⎛ 
⎝ ⎜ ⎞ 
⎠ ⎟ b0 = 1 ⋅1 + 1 ⋅1 = 2

b3 = 2
0
⎛ 
⎝ ⎜ ⎞ 
⎠ ⎟ b2 + 2

1
⎛ 
⎝ ⎜ ⎞ 
⎠ ⎟ b1 + 2

2
⎛ 
⎝ ⎜ ⎞ 
⎠ ⎟ b0 = 1 ⋅ 2 + 2 ⋅1 + 1 ⋅1 = 5

b4 = 3
0
⎛ 
⎝ ⎜ ⎞ 
⎠ ⎟ b3 + 3

1
⎛ 
⎝ ⎜ ⎞ 
⎠ ⎟ b2 + 3

2
⎛ 
⎝ ⎜ ⎞ 
⎠ ⎟ b1 + 3

3
⎛ 
⎝ ⎜ ⎞ 
⎠ ⎟ b0 = 1 ⋅ 5 + 3 ⋅2 + 3 ⋅1 + 1 ⋅1 = 15

4b (10).  Prove that bn +1 ≥ 2n .

SOLUTION:  Basis (n=0)  b1 =1 = 20. 
Ind Hyp:  Assume true for all j≤n. 
Ind Step:  Then

    

bn+1 = n
0

⎛
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⎞
⎠
⎟⎟⎟bn + n

1
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⎜⎜⎜
⎞
⎠
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2

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟bn−2 ++ n

n

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟b0

≥ n
0

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟+

n
1

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟+

n
2

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟++ n

n

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟= 2n
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5 (20 pts).  A bakery sells four varieties of bagels:  egg, onion, poppy, 
and sesame.  

5a (10).  How many different combinations of six bagels are possible? 

SOLUTION:  
4 + 6 − 1

6
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ =

9
3
⎛ 
⎝ 
⎜ 
⎞ 
⎠ 
⎟ = 84

5b (10).  How many of the combinations in 5a contain at least four 
bagels of one kind? 

SOLUTION:  4
4 + 2 − 1

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = 4

5
2
⎛ 
⎝ 
⎜ 
⎞ 
⎠ 
⎟ = 40
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