DISCRETE MATH W3203 Quiz 1

open book

SOL	П П=	TC 11 /	$\bigcup V$	
		11 11 ($/// \sim$
	$\neg \cup \cup$	11 11 \	W 11 '	ハクツ

Your Name (2 pts for legibly PRINTING your name)

Problem	Points	Score
your name	2	
1	13	
2	20	
3	20	
4	25	
5	20	
Total 1	100	

SUGGESTION: Do the EASIEST problems first!

HINT: Some of the solution methods involve highschool math as well as new methods from this class.

W3203Q1sol.F02 1 of 7 10/4/02

¹ An example of the Reasonable Person Principle: A reasonable student expects to lose a lot of credit for neglecting to EXPLAIN an answer. Omit explanations at your own risk.

1 (13 pts). Decide whether these two propositions are equivalent.

SOLUTION: YES

r	s	t	$(s \lor r) \to (s \land \neg t)$	$(r \to s) \land [t \to \neg (r \lor s)]$
\overline{T}	T	T	F	$F(\wedge F)$
T	T	F	$T(\rightarrow T)$	Τ
T	F	T	F	$F(F \wedge)$
T	F	F	F	$F(F \wedge)$
F	T	T	F	$F(\wedge F)$
F	T	F	$T(\rightarrow T)$	T
F	F	T	$T(F \rightarrow)$	\mathcal{T}
F	F	F	$T(F \rightarrow)$	\mathcal{T}

W3203Q1sol.F02 2 of 7 10/4/02

2 (20 pts). Consider the quantified predicate

$$(\forall x \in D)(\exists y \in D)[(x \ge 1) \rightarrow (y^2 = x)]$$

where the domain D is a subset of the real numbers. Over which of the following possible domains D is this true? EXPLAIN your answer.

2a (4). D = the real numbers.

SOL: TRUE. Every real x>1 has a real sq. root y.

2b (4). D = the rational numbers.

SOL: FALSE. Let x = 2. Then x>1, but \sqrt{x} is irrational.

2c (4). D = the squares of the integers: 0, 1, 4, 9, 16, ...

SOL: FALSE. Let x = 4. Then $\sqrt{x} = 2 \notin D$.

2d (4). D =the negative real numbers.

SOL: TRUE. The antecedent (x>1) is always false.

2e (4). $D = \{-1, 1\}$.

SOL: TRUE. x=1 is the only $x \ge 1$. $\sqrt{1} = \pm 1$.

W3203Q1sol.F02 3 of 7 10/4/02

3a (10 pts) To prove that $4n^3 \in \vartheta(n^3)$, it is sufficient to verify the existential proposition $(\exists M)(\forall n > M) \Big[4n^3 < 9n^3\Big]$. Verify that existential proposition.

SOLUTION: (a sample proof)

The ineq. $4n^3 < 9n^3 = 9n^3 - 27n^2 + 18n$

is equiv to $5n^3 - 27n^2 + 18n > 0$.

Now find M such that

 $5M^3 - 27M^2 + 18M > 0$

and is increasing.

e.g., if $5n^3 - 30n^2 + 25n > 7n$, which is true if

 $n^2 - 6n + 5 > \frac{7}{5}$, and thus for all n > 6. Choose M = 6.

Or test with M = 5 and prove increasing.

3b (10). Now prove that $4n^{3} \in \vartheta(n^{3})$.

SOLUTION: (a sample proof)

Suff to prove $4n^3 - 12n^2 + 8n < 4n^3$

simplifies to $12n^2 - 8n > 0$

or to 3n-2 > 0. Use M = 2.

W3203Q1sol.F02 4 of 7 10/4/02

4a (6pts). A number is called *perfect* if it is the sum of its proper divisors. Decide whether 496 is a perfect number.

SOLUTION: $496 = 31 \cdot 2^4$ proper divisors are 1, 2, 4, 8, 16 (subtotal = 31) and $31 \cdot 1$, $31 \cdot 2$, $31 \cdot 4$, $31 \cdot 8$ (subtotal = $31 \cdot 15$).

Thus, 496 is perfect, because it equals the sum of its proper divisors.

4b (5pts). Convert the numeral 1728₁₀ to base 7.

SOLUTION:

$$1728 \div 7 = 246 R6$$

$$246 \div 7 = 35 R1$$

$$35 \div 7 = 5 R0$$

$$5 \div 7 = 0 R5$$

Thus, $1728_{10} = 5016_7$

W3203Q1sol.F02 5 of 7 10/4/02

4c (7pts). Calculate 15⁴⁹ mod 11.

SOLUTION:

$$15^{49} \equiv 4^{49} \equiv 4^9 \mod 11$$
$$\equiv 2^{18} \equiv 2^8 \equiv 256 \mod 11$$
$$\equiv 3$$

4d (5pts). Show that 111112 is divisible by five.

SOLUTION: (sample proof)

$$1 + 12 + 12^2 + 12^3 \equiv$$

$$1+2+2^2+2^3 \bmod 5 \equiv$$

 $15 \mod 5 \equiv 0$

4e (2pts). Show that 1111111111 is divisible by five.

SOLUTION:

111112 divides 1111111112 5 divides 111112 by (4d).

5a (6). Calculate gcd(429, 969) by prime power factorization.

SOLUTION:

429 = 3•11•13

 $969 = 3 \cdot 17 \cdot 19$

gcd = 3

5b (8). Calculate gcd(429, 969) by the Euclidean algorithm.

SOLUTION:

969 429 2 111

429 111 3 96

111 96 1 15

96 15 6 6

15 6 2 3

6 3 2 0

gcd = 3

5c (1). Find integers M and N such that 0 < 43M + 23N < 23.

SOLUTION: $43 \cdot (-1) + 23 \cdot 2 = 3$

5d (5). Find integers M and N such that 43M + 23N = 1. SOLUTION:

$$1 = 3 \cdot 8 + 23 \cdot (-1)$$

= $[43 \cdot (-1) + 23 \cdot 2] \cdot 8 + 23 \cdot (-1)$
= $43 \cdot (-8) + 23 \cdot 15 = 1$ M=-8, N=15

W3203Q1sol.F02 7 of 7 10/4/02