DISCRETE MATH¹ W3203 Quiz 1

open book

Your Name (2 pts for LEGIBLY PRINTING your name on this line)

Problem	Points	Score
your name	2	
1	10	
2	15	
3	18	
4	15	
5	20	
6	20	
Total 1	00	

SUGGESTION: Do the EASIEST problems first!

HINT: Some of the solution methods involve highschool math as well as new methods from this class.

¹An example of the Reasonable Person Principle: A reasonable student expects to lose a lot of credit for neglecting to EXPLAIN an answer. Omit explanations at your own risk.

1 (13 pts). Use a truth table to decide whether this argument is valid.

$q \rightarrow p$ $\neg q \rightarrow r$ $\frac{\neg p}{\therefore r}$	
pqr	
ТТТ	
T T F T F T	
TFF	
FTT	
F T F F F T	
FFF	

2a (15 pts). Decide which of the following functions are one-to-one.

2a (5). $f(x) = 3x \mod 7$ from the set {0,1,...,6} to itself.

2b (5). $f(x) = 4x \mod 6$ from the set $\{0, 1, ..., 5\}$ to itself.

2c (5). $f(\mathbf{x}) = \lfloor \pi \mathbf{x} \rfloor$ mod 7 from the set {0,1,...,6} to itself.

3 (18 pts). Prove that
$$\left| \left(\frac{-1}{2} \right)^n \right|$$
 asymptotically dominates 2^n .
3a (6). First express $\left| \left(\frac{-1}{2} \right)^n \right|$ as a product of n factors.

3b (6). Next find a value K for which
$$\left(\frac{-1}{2}\right)^{\mathbf{K}} > 2^{\mathbf{K}}$$
.

3c (6). Prove that
$$\left| \left(\frac{-1}{2} \right)^{\frac{K+r}{r}} \right| > 2^{K+r}$$
 for all $r > 0$.

4a (10pts). Convert 1246_7 to a base-6 numeral. ZERO CREDIT unless your work is shown.

4b (5pts). Show that 667_{77} is divisible by 19. ZERO CREDIT unless your work is shown. Hint: First expand as a polynomial in 77, and then substitute $77=4\cdot19+1$. 5a (6). Calculate gcd(3122, 833) by prime power factorization.

5b (8). Calculate gcd(3122, 833) by the Euclidean algorithm.

5c (6). Find integers M and N such that 3122M + 833N = gcd(3122, 833).Hint: divide both sides by gcd to simplify.

6a (10 pts). Calculate 147⁸¹⁰ mod 13.

6b (5 pts). Find the multiplicative inverse of 13 mod 17.

6c (5 pts). Find the multiplicative inverse of 41 mod 51. Hint: Find M such that 41M + 51N = 1.