DISCRETE MATH1 W3203 Quiz 1

open book

\begin{center}
\begin{tabular}{lll}
Problem & Points & Score \\
your name & 2 & \\
1 & 13 & \\
2 & 20 & \\
3 & 20 & \\
4 & 25 & \\
5 & 20 & \\
\end{tabular}
\end{center}

\begin{center}
Total 100
\end{center}

SUGGESTION: Do the EASIEST problems first!

HINT: Some of the solution methods involve highschool math as well as new methods from this class.

1 An example of the Reasonable Person Principle: A reasonable student expects to lose a lot of credit for neglecting to EXPLAIN an answer. Omit explanations at your own risk.
1 (13 pts). Decide whether these two propositions are equivalent.

\[
\begin{array}{ccc|c|c}
 r & s & t & (s \lor r) \to (s \land \neg t) & (r \to s) \land [t \to \neg(r \lor s)] \\
 T & T & T & & \\
 T & T & F & & \\
 T & F & T & & \\
 T & F & F & & \\
 F & T & T & & \\
 F & T & F & & \\
 F & F & T & & \\
 F & F & F & & \\
\end{array}
\]
2 (20 pts). Consider the quantified predicate
\[
(\forall x \in D)(\exists y \in D)\left((x \geq 1) \rightarrow (y^2 = x) \right)
\]
where the domain \(D \) is a subset of the real numbers. Over which of the following possible domains \(D \) is this true? **EXPLAIN** your answer.

2a (4). \(D = \) the real numbers.

2b (4). \(D = \) the rational numbers.

2c (4). \(D = \) the squares of the integers: 0, 1, 4, 9, 16,

2d (4). \(D = \) the negative real numbers.

2e (4). \(D = \{-1, 1\} \).
3a (10 pts) To prove that $4n^3 \in \vartheta(n^3)$, it is sufficient to verify the existential proposition $(\exists M)(\forall n > M)\left[4n^3 < 9n^3\right]$. Verify that existential proposition.

3b (10). Now prove that $4n^3 \in \vartheta(n^3)$.
4a (6pts). A number is called **perfect** if it is the sum of its proper divisors. Decide whether 496 is a perfect number.

4b (5pts). Convert the numeral 1728_{10} to base 7.
4c (7pts). Calculate $15^{49} \mod 11$.

4d (5pts). Show that 1111_{12} is divisible by five.

4e (2pts). Show that 11111111_{12} is divisible by five.
5a (6). Calculate \(\gcd(429, 969) \) by prime power factorization.

5b (8). Calculate \(\gcd(429, 969) \) by the Euclidean algorithm.

5c (1). Find integers \(M \) and \(N \) such that \(0 < 43M + 23N < 23 \).

5d (5). Find integers \(M \) and \(N \) such that \(43M + 23N = 1 \).