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DISCRETE MATH1  W3203  Final Exam 

open book 
 
 

SOLUTIONS 
_________________________________ 
Your Name (2 pts for LEGIBLY  PRINTING  your name on this line) 
 
 

   Problem Points Score  
 your name   2 
 1    18 
 2    20 
 3    20 
 4    25 

5 25 
6 30 
7 35 
8 25 

_______________________ 

Total       200 
 
 

SUGGESTION:  Do the EASIEST problems first! 
HINT:  Some of the solution methods involve highschool 
math as well as new methods from this class. 
 
 

                                                 
1An example of the Reasonable Person Principle:  A reasonable student expects to lose a lot of credit for 
neglecting to EXPLAIN an answer.   Omit explanations at your own risk.  
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1a (3 pts).  For the following recursion, calculate  a3,  a4 and  a5 . 

a0 = 0,  a1 = 1,  a2 = 2;    an = n
n − 1

an−1 +
n

n − 2
an−2  for  n ≥ 3 

SOL.  a3 =
3
2
⋅2 + 2

1
⋅1 = 6;  

a4 =
4
3
⋅6 + 4

2
⋅2 = 12;  a5 =

5
4
⋅12 + 5

3
⋅6 = 25;  

 

 
 
 
1b (15).  Use induction to prove that  an = nfn, where  fn  is the nth 
number in the Fibonacci sequence  0, 1, 1, 2, 3, 5, …  .     
 
BASIS :  true for  a0 , a1, and  a2
IND HYP:  assume true for  an−1  and  an− 2  n ≥ 3

IND STEP:  an = n
n−1an−1 +

n
n−2 an−2

= n
n−1 n− 1( )fn−1 +

n
n−2 n − 2( )fn−2

= nfn−1 +nfn−2 = n fn−1 + fn−2( ) = nfn
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2 (20 pts). Solve the following recursion:   
  a0 = 2,  a1 = 3;     6an = 5an−1 − an−2 

SOL.  6r2 − 5r + 1 = 3r −1( ) 2r − 1( ) = 0   r = 1
3

,  1
2

an = B 1
3( )n + C 1

2( )n
a0 = 2 = B + C
a1 = 3 =

B
3
+

C
2

  solve  B = −12
C = 14

an = −12( ) 1
3( )n +14 1

2( )n
 

 
3 (20 pts).  Calculate the value of the general coefficient  an  in the 

power series expansion  
2 − 3x

1−10x + 21x2
 =  anxn

n=0

∞
∑  

SOL.  partial  fractions
2 − 3x

1−10x + 21x2
= 2 − 3x
1− 3x( ) 1− 7x( )

= A
1− 3x

+ B
1− 7x

A +B = 2
−7A − 3B = −3  solve  

A = − 3
4

B = 11
4

an = − 3
4
⋅3n + 11

4
⋅7n
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4 (25).  For two positive integers, we write   m  n  if the sum of the 
(distinct) prime factors of the first is less than or equal to the product 
of the (distinct) prime factors of the second.  For instance,   75  14 , 
because  3+ 5 ≤ 2 ⋅7.   
 
4a (5).  Is this relation reflexive?    Explain.   
SOL.  Yes, because the product of positive integers greater 
than or equal to 2 is less than their sum.  
 
 
4b (10).  Is this relation anti-symmetric?  Explain.  
SOL.  No, because    33  26  and    26  33, but  26 ≠ 33.  
 
 
 
4c (10).  Is this relation transitive?  Explain.  
SOL.  No, because    33  35 and    35 13, but    ¬(33 13).  
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5a (10).  Draw two non-isomorphic 5-vertex, 5-edge simple graphs 
with the same degree sequence.   
 
SOLUTION. 

 
 
 
 
 
5b (15).  Draw all possible 7-vertex trees with maximum degree 3. 
SOLUTION.  The degree seq is either 3321111 or 3222111. 
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6 (30pts).  Which pairs of these graphs are isomorphic.  Explain.  
A B

C0

1 2

5

3

4

6 7

8

0 1 2

3 4 5

6 7 8
 

 
SOLUTION.  A ≅ C as shown by vertex labelling above.  
Zillions of reasons why A and B are non-isomorphic.  E.g.,  

(1) A is nonplanar (see problem #8) but B is planar. 
(2) B has pairs of 3-cycles that share an edge, but C does not. 
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7a (10 pts). Calculate the chromatic number of this graph?   

    
1 2 3

4 5 4 1 5

 
SOL. Given 5-coloring shows 5 is upper bound.  Bold K5 
shows 5 is lower bound.   
 
7b (15).  Show three place where adding a single edge would increase 
the chromatic number.   

 

SOL.  Of the six missing 
edges, these three work. 

 
 
7c (10).  Show where to delete an edge to decrease the chromatic 
number.   
 

X  

SOL.  Delete the marked edge. 
Then start with 5-coloring of 
part (a), and recolor the bottom 
right vertex with color 2. 
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8a (10 pts).  Decide whether the following graph is planar.    
 

 

SOL. Easy proof – bipartite as 
shown.  E = 13.  V= 8. 
13 = E  > 2V- 4  = 12  
Harder Proof. Draw K3,3

 
 
 
 
 
8b (15 pts).  Decide whether the following graph is planar. 
 

  

Solution.  NOT planar.  But NOT 
bipartite. Must find a Kuratowski graph.  
K5 is shown. 

 
 
 
 
 


