
DISCRETE MATH1  W3203  FINAL EXAM
open book

SOLUTIONS
_________________________________
Your Name (2 pts for legibly PRINTING your name)

   Problem Points Score 
 your name   2

1   23
2   20
3   25
4   25
5   30
6   30
7   20
8   25

_______________________
Total      200

SUGGESTION:  Do the EASIEST problems first!

HINT:  Some of the solution methods involve highschool 
math as well as new methods from this class.

1 An example of the Reasonable Person Principle:  A reasonable student expects to lose a lot of credit for 
neglecting to EXPLAIN an answer.   Omit explanations at your own risk. 
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1 (23 pts).  Consider the following recurrence system:
a0 = 0;   a1 = 1;
an = 4an−2 + 1

1a (2).  Calculate a2 ,  a3,  a4,  and  a5.
SOL : a2 = 4a0 + 1 = 4 ⋅0 + 1 = 1 a3 = 4a1 + 1 = 4 ⋅1 + 1 = 5

a4 = 4a2 + 1 = 4 ⋅1 + 1 = 5 a5 = 4a3 + 1 = 4 ⋅ 5 + 1 = 21

1b (21).  Find a closed form for an .
SOL 1 (by special forms):
Homogenous Particular
ˆ a n − 4 ˆ a n−2 = 0 ˙ a n − 4 ˙ a n−2 = 1
r 2 − 4 = 0 try  ˙ a n = D
ˆ a n = B ⋅ 2n + C D − 4D = 1;   D = − 1

3

a0 = 0 = B ⋅ 20 + C −2( )0 − 1
3

B + C = 1
3

a1 = 1 = B ⋅21 + C −2( )1 − 1
3

2B − 2C = 4
3

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

B = 1
2

C = − 1
6

an = 2n−1 − 1
3
⋅ −2( )n − 1

3

SOL 2 by gen fcns on next page
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SOL 2 by gen fcns:

anxn

n= 2

∞
∑ = 4 an−2x n

n= 2

∞
∑ + xn

n = 2

∞
∑

anxn

n= 2

∞
∑ = 4x 2 an−2x n−2

n = 2

∞
∑ + x 2 xn−2

n = 2

∞
∑

A x( ) − a1x − a0 = 4x 2A x( ) +
x 2

1 − x

A x( ) − x = 4x 2A x( ) + x 2

1 − x

A x( ) 1 − 4x 2[ ] =
x 2

1 − x
+ x =

x
1 − x

A x( ) = x
1 − 2x( ) 1 + 2x( ) 1− x( )

= B
1− 2x

+ C
1 + 2x

+ D
1 − x

solve  with  lin  eq : B = 1
2

,  C = − 1
6

,  D = − 1
3

an = 2n−1 − 1
3 ⋅ −2( )n − 1

3
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2 (20 pts).  Consider this binary relation on  {1, 2, 3, 4}: 
R = 2,1( ), 2,3( ), 2, 4( ), 3,3( ), 4,3( ){ }

2a (5).  Represent  R  as a matrix. 

SOL :  

0 0 0 0
1 0 1 1
0 0 1 0
0 0 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

2b (5).  Represent  R  as a digraph.
SOL:

1 2

34

2c (10).  Calculate the relation R2 .

SOL :   R2 =  2,3( ),  3,3( ),  4,3( )  { }
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3a (10 pts).  Give an example of a relation  R  on the set  

S = a,  b,  c,  d{ }  

such that  R  is both an equivalence relation and a partial ordering.
SOL :   R = a,a( ),  b,b( ),  c,c( ),  d ,d( ){ }

3b (15 pts).  Prove that there is only one such relation  R.
Proof:  Let  Q  be any eq rel on  S  that is also a p.o.  
Q Reflexive⇒  ∀x ∈S( ) x, x( ) ∈Q[ ].  ∴R ⊆ Q.
Now suppose that x, y( ) ∈Q.   Symmetry ⇒ y, x( ) ∈Q.
But then anti − symmetry⇒ x = y.  ∴Q ⊆ R.
∴R = Q.
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4a (10). The diameter of a graph is the maximum, taken over all 
vertex pairs  u, v  of the distance between  u  and  v.  Calculate the 
diameter of the Petersen graph.

    

v

u

SOL:  The two spanning trees both have height = 2.  
Thus vertices  u and v are within distance 2 of every other vertex.  
By symmetry, no vertex has eccentricity ≥ 2. 
Thus, the diameter = 2.  

4b (15).  Calculate the chromatic number of the Petersen graph.

           

w

w

w

w

b

b

b
r

r

r

SOL:  A 3-coloring is shown at the right.
Since there is a 5-cycle, no 2-coloring is possible.
Thus, the chromatic number is  3.  
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5 (30 pts).  Consider the following three graphs: 

G H J

5a (10).  Decide whether  G  and  H  are isomorphic.  Explain. 
SOL (many ways):  NO.
(1) diameter: diam (G) = 2; diam(J) = 3.
(2) girth:  girth (G) = 5;  H has 4-cycles. 
(3) G is vertex-transitive;  H is not. 

5b (10).  Decide whether  G  and  J  are isomorphic.  Explain. 
SOL (many ways):  NO.
(1) diameter: diam (G) = 2; diam(J) = 3.
(2) girth:  girth (G) = 5; J has 4-cycles.
(3) chromatic number: χ(G) = 3;  χ(J) = 2 (bipartite). 

5c (10).  Decide whether  H  and  J  are isomorphic.  Explain. 
SOL (many ways):  NO.   but NOT due to diameter or girth.
(1) chromatic number: χ(H) = 3;  χ(J) = 2 (bipartite).
(2) In J, but not in H, every edge lies in a 4-cycle.
(3) radius(H) = 2;  radius(J) = 3. 
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6a (15).  Mark two edges in the following graph such that it remains 
nonplanar after both are deleted.  Prove your answer.

      
SOL:  Draw subdivided K3,3-subgraph as above, 
with two unused edges.

6b (15).  Let  G be the edge-complement of a 10-vertex, 
3-regular simple graph.   Prove that  G  is non-planar.

PROOF:  Graph  G  must be 6-regular.
Thus, it has  30 edges.  
The Euler polyhedral equation V-E+F = 2
implies that  10-30+F = 2.  Thus, |F| = 22.  
However, the edge-face inequality 2E ≥ 3F
implies that  60 = 2•30 ≥ 3•22 = 66, a contradiction!
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7 (20).  Consider the following recurrence:
a0 = 0;   an = n2 − nan−1

7a (3).  Calculate  a1,  a2 ,  and  a3.  
SOL :  a1 = 12 − 1 ⋅a0 = 1;  

a2 = 22 − 2 ⋅a1 = 4 − 2 = 2;

a3 = 32 − 3 ⋅a2 = 9 − 6 = 3.

7c (17).  Prove that  an = n.  
Proof by induction:  
Basis : a0 = 0.
Ind  Hyp :  Assume  that  an−1 = n − 1.

Ind  Step :  an = n2 − n ⋅an−1   recursion
= n2 − n ⋅ n −1( )    by  ind  hyp

= n2 − n2 − n( ) = n
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8 (25 pts).  A bowl contains 50 fair coins {with p(H) = 0.5} and 50 
standard loaded coins {with p(H) = 0.8}.  A coin is drawn at random.

8a (10).  The coin is tossed once.  What is the probability of the 
outcome H? 

SOL :   pr H( ) = pr H ∧Fair( ) + pr H ∧ Loaded( )
= pr H |Fair( ) ⋅ pr(Fair ) + pr H | Loaded( )pr(Loaded)
= 0.5 ⋅0.5 + 0.8 ⋅ 0.5 = 0.65

 
8b (15).  If the outcome of the toss is H, what is the probability that 
the coin selected was loaded?

SOL :   pr Loaded | H( ) =
pr Loaded ∧H( )

pr H( )

= 0.4
0.65

 or  8
13
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