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9.1 INTRODUCTION TO GRAPHS

DEF: A graph G = (V, E) has two sets as its
domains.
e The elements of the set V' are called vertices.
e The elements of the set E are called edges.

e For each edge e there is a set of one or two ver-
tices, called the endpoints of e.

A vertex is typically conceptualized as a point in
R"™, most often in 2-space or 3-space.

An edge is conceptualized as a space curve (with-
out self-intersections) joining its endpoints.

Fig 9.1.1 A general graph.

DEF: Two vertices are adjacent if there is an edge
joining them.
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9.1.2 Chapter 9 Graph Theory

DEF: A graph is simple it

(1) there are no self-loops, and

(2) there is at most one edge between any pair of
vertices. (better etymology: “simplicial”)

Fig 9.1.2 A simple graph.

OPTIONAL FEATURES of GRAPHS

DEF: A direction on an edge is a designation of a
foward sense.

DEF: An arc is an edge with a direction.

DEF: A digraph is a collection of vertices and arcs.

Fig 9.1.3 A digraph.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition



Section 9.1 Introduction to Graphs 9.1.3

Remark: Other optional features include
vertex labels, edge labels, vertex weights, and
edge weights.

Augusta
214
Columbus Montpelier 15g
Concord
Charleston
112 Boston
Annapolis
o .
Dover %If: Hartford 62 Frovidence

CLASSROOM QUESTION

Can the numerical edge labels shown above be cor-
rect distances, for any collection of cities?
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9.1.4 Chapter 9 Graph Theory

GRAPH-THEORETIC SOFTWARE

Graph theory software should always be

designed for all graphs, not just for simple

graphs. It should always be designed to permit
(but not require) directions, vertex labels, edge la-
bels, and the capacity for adding unforseen
features at a later time.

It takes only a few additional minutes of design
effort to plan for reusability.

Retrofitting tends to be formidable, and often in-
feasible.
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9.2 GRAPH TERMINOLOGY

DEGREE

DEF: The degree or valence of a vertex v is the
number of edge-ends incident on v.

Remark: A self-loop contributes two to the

degree of a vertex.

DEF: The degree sequence of a graph G is a list
of all degrees in ascending order.

Example 9.2.1: The degree sequence for this
graph is
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9.2.2 Chapter 9 Graph Theory

Thm 9.2.1. (Euler) The sum of the degrees of a
graph equals twice the number of edges.

Pf: Every edge contributes two to the degree
sum. &

Cor 9.2.2. A graph has evenly many vertices of
odd degree.

Pf: Parity. &

Thm 9.2.3. Let G be a simple graph with at least
two vertices. Then G has two vertices with the
same degree.

Pf: By pigeonholing and induction. &

CLASSROOM EXERCISE

Construct a non-simple graph whose vertices all
have different degrees.
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SOCIOLOGICAL APPLICATIONS

Represent the students in a discrete math class as
vertices, with an edge joining each pair of students
who were acquainted before the course began. This
is a simple graph.

Cor 8.2.2 implies that the number of students who
knew an odd number of other students is an even
number.

Thm 8.2.3 implies that there must be two students
who know the exact same number of other stu-
dents.

Remark: Thm 8.2.3, Cor 8.2.2, and Thm 8.2.1 are
all sometimes given the same cutesy sociologically
inspired name.
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GRAPH THEORETIC DEFINITIONS

= Graph theory terminology and notations differ
from one textbook to another.

e Some graph theorists say “degree” and others
say “valence”.

e Some graph theorists stigmatize graphs with
self-loops by calling them “pseudographs”.

How did this happen?

1. Thousands of different researchers have pub-
lished journal articles on graph theory.

Explore www.graphtheory.com.

Click on Graph Theory Resources.

2. There are hundreds of books about graph
theory.

See Www.amazon.com

or www.bn.com.
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SPECIAL GRAPHS

DEF: A complete graph is a simple graph such
that every pair of vertices is joined by an edge.

NOTATION: The complete graph on n vertices is
denoted K,,.

Ks
DEF: A path graph has vertices v, vs,...,v, and
edges e1,€2,...,e,_1, such that edge e, joins ver-

tices v and vg 1.

NOTATION: The path graph on n vertices is de-
noted P,. (Elsewhere, P, may denote the graph
with n edges and n + 1 vertices.)

P, e—e—eo—0—0o—0—o
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9.2.6 Chapter 9 Graph Theory

DEF: A cycle graph has vertices vy, v1,...,0,_1
and edges eg,€e1,...,e,_1, such that edge e joins
vertices vy and vVi41( mod n)-

NOTATION: The cycle graph on n vertices is
denoted C,,.

Ce

DEF: A wheel graph has a hub vertex joined
to every other vertex and a cycle through all the
other vertices.

NOTATION: The wheel graph whose rim is an
n-cycle is denoted W,,. (Elsewhere, W,, may
denote the n-vertex graph with an (n — 1)-cycle
on its rim.)

We
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DEF: A bouquet is a graph with only one vertex.

NOTATION: The bouquet on n edges is denoted B,,.

By

DEF: The 1-skeleton of a polyhedron is the graph
comprising all the vertices and edges of the polyhe-
dron.

DEF: The cube graph of dimension n is the
1-skeleton of the n-dimensional cube.

NOTATION: The n-dimensional cube graph is
denoted @),,.

Qg
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REGULAR GRAPHS

DEF: A graph (not just a simple graph) is
regular if every vertex has the same degree.

Example 9.2.2: The following graphs are regu-
lar.

e The complete graph K, is regular of degree
n — 1.

e A cycle graph is regular of degree 2.
e The cube graph @), is regular of degree n.
e The bouquet B, is regular of degree 2n.

Example 9.2.3: The only regular wheel graph is
W3, which is isomorphic to Kjy.

CLASSROOM EXERCISES

Construct all the (isomorphism types of) regular
simple n-vertex graphs, for

n=23.45
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BIPARTITE GRAPHS

DEF: A graph is bipartite if its vertex set can be
partitioned into two cells such that every edge joins
a vertex in one cell to a vertex in the other cell.

Example 9.2.4: A path graph is bipartite.

Example 9.2.5: An even cycle graph is
bipartite.

DEF: A simple graph is complete bipartite if it is
bipartite so that every vertex in once cell is joined
to every vertex in the other cell.

Ks 4
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NEW GRAPHS FROM OLD

DEF: A subgraph of a graph G = (V, E) is a
graph H = (U, D) such that U CV and D C E.

Remark: Since the subgraph H = (U, D) is a
graph, it follows that U must contain all the end-
points of the edges in D.

DEF: The edge-complement of a simple graph G
is the graph G on the same vertex set as G, such
that two vertices of G are joined by an edge if and
only if they are not adjacent in G.

254

¥
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9.3 REPRESENTATIONS & ISOMORPHISM

INCIDENCE TABLE REPRESENTATION

DEF: An incidence table for a graph has a
column indexed by each edge. The entries in the
column for an edge are its endpoints. If the edge is
a self-loop, then the endpoint appears twice.

Example 9.3.1:

edge a b ¢ d f g h k

endpts | v v w w v v w v
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INCIDENCE MATRIX REPRESENTATION

Example 9.3.1, continued:

a b cd f g h k "
w. 22 11 0 0 0 0
v. 00 1 0 1 1 1 2
w. 000 1 1 1 1 0

Incidence matrices waste space on all the zeroes.
However, they are sometimes useful in conceptual-
1zat1ion.

Thm 9.2.1. (Euler’s Thm, revisited)
The sum of the degrees of a graph equals 2|E)|.

Pf: The degrees of a graph are the row sums of
its incidence matrix. Thus, the sum of the degrees
equals the sum of the row sums. There is a column
for each edge, and every column sum is 2. Thus,

2 |E| equals the sum of the column sums. There-
fore, the sum of the row sums equals the sum of
the column sums. &
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ADJACENCY LIST REPRESENTATION

DEF: An adjacency list for a vertex v of a graph
(G is a list containing each vertex w of GG once for
each edge between v and w.

DEF: An adjacency list representation of a
graph is a table of all the adjacency lists.

Example 9.3.1, continued:

u. U4 U v w g
a

V. u v w w o w

w. u v (% (%

ADJACENCY MATRIX REPRESENTATION

u v ow
w. 2 1 1
v. 1 1 3
w. 1 3 0

Remark: Lots of wasted space. Clumsy for self-
loops.
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GRAPH ISOMORPHISM

The Greek root “iso” means “same”. The Greek
root “morphism” means “form”.

Example 9.3.2: An isosceles triangle has two
edges that are the same length.

isosceles
triangle

Example 9.3.3: Two molecules with the same
chemical formula are called isomers.

H

®)

®)

bbb
T

H—@O)—H

H

Oz
r O—=x
r ©—T
—O—=x

butane isobutane
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And now for graphs. How are these the same??

DEF: The graphs G and H are isomorphic
if there exists a one-to-one onto function

f:VG—>VH

such that Yu,v € Vi, the number of edges
between f(u) and f(v) equals the number of edges
between v and v.
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SIMPLE ISOMORPHISM

Proposition 9.3.2. Two simple graphs G and H
are isomorphic if and only if there if a bijection

f:Vog—=Vy

such that vertices f(u) and f(v) are adjacent in H
if and only if vertices u and v are adjacent in G.

Example 9.3.4: The graph mapping f is an iso-
morphism.

u a v f(v)

f(d) (0

> @

w f(u) fe) f(w)
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Clearly, two isomorphic graphs have
e the same number of vertices

e the same number of edges

e the same degree sequence

But this is not enough!

Example 9.3.5: Two nonisomorphic graphs with
the same degree sequence.

O—C0 =

Example 9.3.6: Two more graphs with the same
degree sequence, yet nonisomorphic.
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GRAPH ISOMORPHISM TESTING

Example 9.3.7: Are these graphs isomorphic?

0 2 4
1 3 5
K34 ML 3

Example 9.3.8: Are these graphs isomorphic?

SR @
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Example 9.3.9: Are these graphs isomorphic?

0 2 4
1 3 5
K 3,3

Example 9.3.10: From Final Exam May 1993.
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Example 9.3.11: From Dec 1993.

B

Example 9.3.12: From May 1994.

L
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Example 9.3.13: From GTAIA

A

No two of these graphs are isomorphic.

A

Remark: Prop 9.4.2 (next section) facilitates a
brief explanation why.
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9.4 CONNECTIVITY

WALKS and PATHS

DEF: A walk from vertex vy to vertex v,, 1S an al-
ternating sequence

W = wvg, e1, v1, €2, V2, ..., Un_1, €n, Un
such that edge e; joins vertices v;_1 and v;.

e The initial vertex is vg. The final vertex is
v,. These two vertices are external. The other
vertices are internal.

e Walk W is closed if vy = v,,. Otherwise it is
open.

DEF: The length of a walk is the number of edge-
steps.

NOTATION: In a simple graph, a walk may be rep-
resented unambiguously by its vertex
sequence or by its edge sequence.
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SOME FINE POINTS OF WALKS

Example 9.4.1: Consider three walks:

Wl — u,c,v,f,w,h,v,f,w
— v,f,w,h,v
W3 = w, f,v,h,w

S
|

w

(1) Walk W; has length 4, because there are four
edge-steps: ¢, f,h, f. Yet it traverses only three

edges {c, f,h}.

(2) Walk Wy can be represented unambiguously
by its edge sequence: ¢, f,h, f. Yet its vertex se-
quence u,v,w, v, w fails to specity which of the
edges f,g,h is to be traversed in the second, third,
and fourth edge-steps.

(3) Similarly, walk W5 cannot be represented un-
ambiguously by its vertex sequence v, w, v.

(4) Moreover, walk W5 cannot be represented un-
ambiguously by its edge sequence f,h, because
that is also the edge sequence of the walk Wj.
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DEF: A trail is a walk with no repeated edges.
{The text uses “path”, instead of “trail”.}

5
0\5
6 54
0 1 ) 4
o102 3o
Z
7
1o

DEF: An open path is an open trail with no
repeated vertices.

DEF: A cycle or closed path is a closed trail in
which the only vertex that is repeated is the exter-
nal vertex.

TERMINOLOGY NOTE: Thus, paths and cycles are
alternating sequences of vertices and edges,
conceptually distinct from path graphs and cycle
graphs, which are types of graphs.

TERMINOLOGY NOTE: Since the text permits a
“path” to have repeated vertices, it says “simple
path” when it means to exclude them.
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CYCLE GRAPHS and ISOMORPHISM

Prop 9.4.1. Let f : G — H be a graph
isomorphism, and let

W = wvo,e1,V1,...,0n-1,€n,Un

be a walk in G. Then
f<W> — f(’()o),f<€1),f<?)1), s 7f<vn—1)7f<€n>7 f(vn)

is a walk in H.

Prop 9.4.2. Let f : G — H be a graph
isomorphism, and let C' be a k-cycle subgraph of
G. Then f(C) is a k-cycle subgraph of H.

Remark: Knowing that an isomorphism, if it ex-

isted, would map a k-cycle subgraph in the domain
to a k-cycle subgraph in the codomain is often use-
ful on proving that two graphs are not isomorphic.
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Example 9.4.2:

<L

Graphs G and H have the same degree sequence
2,2,3,3,3,3, so the isomorphism problem might be
non-trivial.

However, graph GG has two 3-cycles. Graph H is
bipartite, so there are no odd cycles. Thus, they
cannot be isomorphic.

Remark: Examining cycle subgraphs permits a
brief explanation of Examples 9.3.9 and 9.3.13.
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CONNECTEDNESS

DEF: A graph G is connected if every pair of
vertices u,v € V is joined by a path.

DEF: A component of a graph G is a maximal
connected subgraph, that is, a subgraph that is not
properly contained in any larger connected sub-
graph.

A graph with four components.

DEF: A digraph D is strongly connected if
every pair of vertices u,v € Vp is joined by a di-
rected path.
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NAIVE CONNECTEDNESS TEST

Prop 9.4.3. Let A be the adjacency matrix of a
graph G. Then A"|i,j] is the number of walks of
length n between vertices i and j.

Pf: Follows from the def of matrix mult. &

Example 9.4.3:

] @A1234

110 1 1 1

211 2 0 1

3/1 00 2

3 4 41112 0
A’|l1 2 3 4
13 3 2 3
2136 3 3
3|3 3 5 1
413 316

Connectedness Test: For an n vertex graph, cal-
culate the first n—1 powers of its adjacency matrix.
The graph is connected if no vertex

remains zero throughout the process.
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CUTPOINTS and CUTEDGES

DEF: A cutpoint of a graph is a vertex whose re-
moval increases the number of components.

DEF: A cutedge of a graph is an edge whose re-
moval increases the number of components.
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9.5 EULER AND HAMILTON TOURS

KONIGSBERG BRIDGE PROBLEM

DEF: An Fulerian tour in a graph is a closed
walk that traverses every edge exactly once.

DEF: An Eulerian graph is a graph that has an
Fulerian tour.

DEF: An Eulerian trail in a graph is a trail that
traverses every edge exactly once.
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The Konigsberg graph is a non-Fulerian graph.
C

B

Thm 9.5.1. A connected graph is Eulerian if and
only if every vertex has even degree.

Pf: sketch in class.

Thm 9.5.2. A connected graph has an open
Fulerian trail if and only it has exactly two
vertices of odd degree.
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CLASSROOM QUESTIONS:

6 7

1. Is this graph Eulerian?

2. If not, how might it it be modified to make it
Fulerian?
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HAMILTONIAN TOURS

DEF: A Hamiltonian tour in a graph is a cycle
that visits every vertex exactly once.

DEF: An Hamiltonian graph is a graph that has
a spanning cycle.

DEF: An Hamiltonian path in a graph is a path
that visits every vertex exactly once.
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Example 9.5.1:

9.5.5

Find a Gray code in the

hypercube.
010 110
000 100
011 111
001 101
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Criterion for proving a graph is Hamiltonian.

Theorem 9.5.3. (Dirac’s Theorem) Let G be a
simple n-vertex graph with n > 3, such that every

vertex has degree at least {gJ . Then G is Hamil-

tonian.

Pf: Omitted. &

Example 9.5.2: Dirac’s Theorem simplifies the
task of constructing all the isomorphism types of
3-regular 6-vertex simple graphs, because it implies
that every one of them has a complete spanning
cycle. There are only these two.
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Rules for proving a graph is not Hamiltonian.

(1) If a vertex v has degree two, then both its inci-
dent edges must lie on a Hamiltonian cycle, if
there is one.

(2) If two edges incident on a vertex are required in
the construction of a Hamilton cycle, then all
the others can be deleted without changing the
Hamiltonicity of the graph.

(3) If a cycle formed from required edges is not a
spanning cycle, then there is no spanning cycle.

(4) A Hamilton graph has no cutpoints.

Example 9.5.3: ®

Example 9.5.4:

coursenotes by Prof. J. L. Gross for Rosen 6th Edition



Section 9.7 Planar Graphs 9.71

9.7 PLANAR GRAPHS

DEF: A graph is planar if it can be drawn without
edge-crossings in the plane.

Imbedding Problem: Given a graph G and a
surface .S, is it possible to draw G on .S without
any edge-crossings?

Planarity Problem: Surface S is the sphere (or
plane).

ORIENTABLE SURFACES

The entire sequence of orientable surfaces

) © COOR
So S S, S;3

is generated by the torus.

meridian

V\ longitude
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9.7.2 Chapter 9 Graph Theory

Every closed surface in 3-space is topologically
equivalent to one of the surfaces S,. There are
many ways of placing the same surface into
3-space.

op

NONORIENTABLE SURFACES

The entire sequence of nonorientable surfaces

®® ®® e o @
®

N, N> N3
is constructable by cutting holes in the sphere and
capping each hole with a Mobius band.

— — ends pasted together
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SPHERE and PLANE

In applications, the sphere is the most important
surface on which graphs are drawn.

Thm 9.7.1. A graph can be drawn without edge-
crossings in the plane if and only if it can be drawn
without edge-crossings in the sphere.

Pf: The plane is topologically a sphere with a
missing point at the North pole. &
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JORDAN CURVE THEOREM

Mathematically, the sphere (and plane) are by far
the easiest surfaces for graph drawing problems.
Here is why:

Thm 9.7.2. (Jordan Curve Theorem)
Every closed curve in the sphere (plane) separates
the sphere (plane) into two regions.

Pf: (Veblen, 1906) quite technical.

Thm 9.7.3. (Schonfliess)
Fach side of the separation of the sphere by a
closed curve is topologically equivalent to a disk.

Remark: The Schonfliess Theorem does not hold
in dimensions greater than two.
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KURATOWSKI GRAPHS

Problem 5: How to prove that K5 is non-planar.

Ks-e: planar  Ks: non-planar
Problem 3,3: Prove that K3 3 is non-planar.

0 2 4

1 3 5
Ks 3 :non-planar

First — a geometric proof that K3 3 is non-planar.
Second — an algebraic proof for K.
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NONPLANARITY of Kj 3

1. However K3 3 is drawn without crossings in the
plane, the 4-cycle (0-1-2-3) cuts the plane into two
regions.

Oe o

3@ ®2

2. The path 1-4-3 lies wholly in one of them,
thereby separating it into two smaller regions.

Oe 1

3 ®?2

Altogether now, there are now three regions. Ver-
tex 5 must lie in one of them.
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3. Finally, insert vertex 5 into any of the three
K9 3-regions. Only two of the three vertices

0, 2, 4 lie on the boundary of any of these three
regions. Thus, vertex 5 cannot be joined to all of

them without crossing any edges. &
Oe 1
4
3 ®?2

NONPLANARITY of K;

Our proof that K5 is non-planar is by algebraic
topology. Unlike the specialized proof above for
K33, 1t can be used to establish the nonplanarity
of many graphs, not merely of one special case.

First Preliminary Objective: to prove that
every connected graph imbedded in the plane
satisfies the Euler polyhedral equation:

VI =Bl +|F|] = 2
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When a graph is drawn in the plane or in any
other surface, it subdivides the rest of the surface
into regions. (The exterior region is included.)

In the classical case first studied by Leonhard Eu-
ler, the graph comprised the vertices and

edges of a 3-dimensional polyhedron. For that rea-
son, the regions are also called faces.

tetrahedron cube
V=4, E=6, F=4 V=8, E=12, F=6

REVIEW : A tree is a connected graph without
cycles.
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Lemma 9.7.4. Let T be a tree with at least one
edge. Then T has at least two 1-valent vertices.

Pf: Let P be a maximum length path in tree T
Let v be the initial vertex of path P, and let w be
the next vertex after v in path P.

\' W

If vertex v were also adjacent to some vertex after
w in path P, then there would be a cycle in the
graph.

\' w

If vertex v were also adjacent to some vertex of

T — P, then the path P could be extended, violat-

ing its maximality.
\'

W

Thus, vertex v has only one neighbor. Likewise,
this is true of the last vertex of path P. &
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Lemma 9.7.5. Let T’ be a tree. Then
El=]V]-1

Pf: By mathematical induction.

BASIS: If |V| = 1, then |E| = 0, lest there be a
cycle.

IND HYP: Assume true for all trees with
V=n-1.

IND STEP: Suppose that |V| = n. By Lemma
9.7.4, the tree T has a 1-valent vertex v. Let

T’ be the graph obtained by deleting vertex v and
the edge incident on v from tree 7.

T T

\'

Then T' is still connected, and it still has no

cycles. Thus, T" is a tree with n — 1 vertices. From
IND HYP, we infer that T’ has n — 2 edges. Hence,
tree T has n-1 edges. &
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DEF: The cycle rank of a connected graph G is
the number 3(G) of edges in the complement of a
spanning tree for G. Obviously, a tree has cycle
rank zero. More generally, by Lemma 9.7.5,

B(G) = [E] = V] +1

Thm 9.7.6. (Euler polyhedral equation)
Let G be any connected graph drawn in the
sphere or plane. Then

VI =1E]+ |F| =2

Pf: By induction on the cycle rank.

BASIS: If 8(G) = 0, then graph G is a tree, which
implies that
Fl=1

since the only region is the exterior region.
Moreover, (by Lemma 9.7.5) all trees satisfy
VI-I|El=1

Thus, the equation |V| — |E| + |F| = 2 holds.
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IND HYP: Assume that the equation
VI [El+|F| =2
holds whenever 3(G) =n — 1.

IND STEP: Now suppose that 3(G) = n, where
n > 1. Let H be the graph obtained by erasing a
cycle edge e of G. Then, by IND HYP,

VI = |B| +|F| = 2
Of course,

V(H)| = |V(G)| and |E(H)| = |E(G)| -1
Moreover, erasing e joins two regions of G. Thus,

[F(H)| = [F(G)] -1

Substituting these results into the equation
V(H)| - |E(H)|+ |F(H)| = 2
yields
V(G| = [|E(G)] =1+ [|[F(G)] - 1] = 2

which implies the conclusion immediately. &
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Remark: In what follows, you need recall only
the Euler polyhedral equation, and not the lemmas
used to prove it.

VI =8
IEl =13 girth = 3
IFl=7

Second Preliminary Objective: to prove that
every connected graph imbedded in the plane satis-
fies the edge-face inequality:

2| E|

Fl < ————
] < girth(G)
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EDGE-FACE INEQUALITY

DEF: The girth of a graph G is the length of the
shortest cycle in G. (The girth of a tree is
considered to be infinite.)

DEF: The size of a region of a graph imbedding
is the number of edge-steps in its boundary
circuit.

Thm 9.7.7. Let a graph G be drawn on any sur-
face. Then the sum of the region sizes equals 2F.

Pf: Every edge occurs exactly twice in this sum.

%

Cor 9.7.8. Let a graph G be drawn in any sur-
face. Then

2|E| > ginth(G) - |F|

Pf: Each of the |F| regions contributes at least
girth(G) to the sum of the region sizes. %

Cor 9.7.9. Edge-Face Inequality

|F| < LE’
— girth(G)
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And now for the promised payoft.

Thm 9.7.10. The complete graph K5 is non-
planar.

Pf: |V(K5)| =5 and |E(K5) = 10|. Thus, if you
could draw K5 in the plane, the Euler equation
V|- |E| + |F| = 2 would imply that

Fl =7

Girth(K5) = 3, because there are no self-loops or
double edges. This contradicts Cor 9.7.9, since
2-10 2|E
rg 210 2
3 girth(K5)

%

Thm 9.7.11. The complete bipartite graph K3 3
is non-planar.

Pf: Same approach!
[V(Ks3)| = 6 and |E(Ks3)| =9

Thus, |F| = 5. Moreover,girth(K3 3) = 4, because
K3 3 is bipartite. This contradicts the edge-face
inequality, since

2-9 D

T B gil‘th(K:gj:g)
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KURATOWSKI'S THEOREM. Every non-planar
graph contains a subdivision of K5 or a subdivision
of K33. Proof is given in W4203 every spring.

Example 9.7.1: The Petersen graph (1891) is
non-planar.

Pf:
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TWO NONPLANARITY CRITERIA

As an alternative to using elementary principles
to prove nonplanarity, we derive two formulas that
can be applied in proofs of non-planarity.

Thm 9.7.12. Let G = (V, F) be a connected
simple planar graph, with |V| > 3, such that

|E| > 3|V| -6
Then GG is nonplanar.

Pf: A planar drawing of G must satisfy
E] = V[ + |F] — 2

The girth of a simple graph is at least 3, so the
Edge-Face Ineq implies that |F| < 2|E|. Thus,

2
Bl < [V + 2 |B| - 2
The conclusion follows easily. &

Remark: Thm 9.7.12 is adequate to prove the
nonplanarity of Ks.
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Thm 9.7.13. Let G = (V, F) be a connected sim-
ple planar bipartite graph, with |V| > 3, such that

E| > 2|V| — 4
Then GG is nonplanar.

Pf: A planar drawing of G must satisty
Bl = [V[+ |F] — 2

The girth of a simple bipartite graph is at least 4,
because there are no odd cycles. Now the Edge-
Face Ineq implies that |F| < 2|E|. Thus,

2
Bl < V] + 1B - 2
The conclusion follows easily. &

Remark: Thm 9.7.13 is adequate to prove the
nonplanarity of K 3.
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9.8 GRAPH COLORING

DEF: An n-coloring of a graph G is a function
from its vertex set Vi onto the set {1,2,...,n},
whose elements we regard as “colors”.

DEF: An n-coloring is proper if no pair of
adjacent vertices gets the same color.

DEF: A graph G is n-colorable if it has a proper
n-coloring.

Example 9.8.1: A 4-coloring of a graph.
Colors = a, b, ¢, d

DEF: The chromatic number of a graph G is
X(G) = min{n € Z* | G is n-colorable}. Also,
one says that G is n-chromatic if Y(G) = n.
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Example 9.8.1, continued: The graph above is
3-chromatic.
Pf: (upper bound) It is 3-colorable.

(lower bound) Since the graph contains K3, at
least 3 colors are needed. &

TERMINOLOGY: General colorings are frequently

encounted in problems involving the counting of
symmetry classes.
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OBSTRUCTIONS

DEF: An obstruction set for n-chromaticity is a
family F of n + 1-chromatic graphs such that every
n + 1-chromatic graph contains at least one graph
in F as a subgraph.

Obstruction set for 1-chromaticity: an edge
{2}
o O

Obstruction set for 2-chromaticity: odd cycles
{037 057 077 . }

Example 9.8.2: Y(C4) = 2 and x(C5) = 3.
Q
J/ ~N
_ N
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Partial obstruction set for 3-chromaticity:
the odd wheels

{W?)a W57W77 ax

Ay B

Example 9.8.3: A 4-chromatic graph that
contains no odd wheel.

start
here
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APPLICATIONS

1. transmitters and channel assignment
2. fast register assignment

3. final exam scheduling
vertices = classroom sections (over all courses)
two sections are adjacent if 4 student in both

4. cartography: what’s the chromatic number of
the USA?
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GREEDY COLORING ALGORITHM

In this case, the greedy algorithm yields a
4-coloring, and four is provably the minimum.

Sometimes the greedy algorithm yields a
non-minimum number of colors.
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MAP COLORING

e N
—(__ )
N J

Poincare Duality transforms region coloring into
vertex coloring.
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Thm 9.8.1. The average valence of a planar sim-
ple graph G is less than 6.

Pf: Let G be imbedded in the plane. Then

2 = |V| = |E| + |F]
2|FE
[P < 21F]
3
E
2 S |V|_u
3
B < 3V| -6
2|E\ 12
Yavg(G) = — < 6 — — < 6 O
© 14 14

coursenotes by Prof. J. L. Gross for Rosen 6th Edition



Section 9.8 Graph Coloring 9.8.9

Thm 9.8.2. Six colors is sufficient to color any
planar graph.

Pf: Let GG be the smallest planar graph that re-
quires seven colors. By Thm 9.8.1, some vertex v
has five or fewer neighbors.

Color the graph G — v with six colors. At most
five of the colors are used on neighbors of v. Now
color vertex v with any color not used on one of its
neighbors. &
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Thm 9.8.3. [Heawood, 1890] Five colors is suffi-
cient to color any planar graph.

Pf: Let GG be the smallest planar graph that re-
quires six colors. By Thm 7.8.1, some vertex v has
five or fewer neighbors.

Color the graph G — v with five colors. If not all
five colors are used on the neighbors of v, we can
apply the unused color to v. Thus, we may as well
assume that G — v has a five coloring with the fol-
lowing configuration at vertex wv.

1

Complete the proof with Kempe chains.
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