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Section 8.1 Relations & Their Properties 8.1.1

8.1 RELATIONS & THEIR PROPERTIES

DEF: A binary relation is a predicate on the
cartesian product A x B of two sets. Sometimes
we say from A to B.

CONCEPTUALIZATION and MODELING

A binary relation is set-theoretically modeled as a
subset of A X B.

Example 8.1.1: C(-,-) capital city of
domain = (' x S cities and states
e.g., C(Albany, NY), C(Pierre, SD)

Example 8.1.2: < less than or equal to
domain = R x R, where R = real numbers.
For instance, m < 7.6.

Conceptually, one usually regards “is capital of”
and < as

yes-no oracles

on ordered pairs. Their respective models as sets
of ordered pairs are useful in representing these
relations on a computer.
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MORE EXAMPLES

Example 8.1.3: FE(-,-) eats
domain = A x A, where A = animal species.
For instance, E(pythons, rabbits).

Example 8.1.4: H(-,-) husband of
domain = M x F (males, females)
For instance, H(Jacob, Leah), H(Jacob, Rachel)

Example 8.1.5: B(-,-) brother of
domain = P x P, where P = all persons.
For instance, B(Joseph, Benjamin).

GENERALIZATION

Relations on products of more than two sets:
ternary (“3-ary”), quarternary (“4-ary”), etc.
See 8.2 of Rosen text.

Example 8.1.6: R(a, e, y) means that a and e
are father and mother, respectively, of child y.
Domain = (males, females, persons).

Thus, R(Abraham, Sarah, Isaac) is true.

N.B. R(Sarah, Abraham, Isaac) is meaningless and
R(Isaac, Sarah, Abraham) is false.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition



Section 8.1 Relations & Their Properties 8.1.3

ALTERNATIVE MODELS of RELATIONS

A binary relation can also be modeled as a list of
lists of relatives or as a matrix.

Example 8.1.7: The relation () from the set
{1,2,3} to the set {A, B,C'}, with the ordered-
pairs model

Q — {<1>A>7 <1aB>7 <27C>7 <37A>7 <370>}
has the lists-of-relatives model
1: A B
2:.C
3:AC

and the matrix model

A B C
I 1 1 0]
210 0 1
311 0 1
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COMPOSITION OF BINARY RELATIONS

DEF: Let () be a relation from S to 1" and R a re-
lation from T to U. Their composition () o R is
the relation on S x U that is true for any pair (s, u)
such that

(It € T)[Q(s,t) N R(t,u)]

Remark: Using either the ordered-pairs model or
the matrix model often makes the construction of
compositions seem easier.

Example 8.1.8: Construct () o R, where

Q = {<1>A>7 <1aB>7 <27C>7 <37A>7 <370>}

and
R = {(A ), (4,9), (4,2), (B,w), (B,y)}

Using the definition of composition directly, we
must consider every pair in the product

{17 2, 3} X {w> L, Y, Z}

and decide whether some member of {A, B, C'} re-
lates the two coordinates.

CONTINUED
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(\)

DEF: Let R be a relation on set S. Then the

Relations & Their Properties
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powers of R are defined inductively:

RY = I (identity relation)
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REFLEXIVE PROPERTY of RELATIONS

A binary relation R on a set S is reflexive if and
only if

(Vx € )[R (z,z)]

Example 8.1.2, continued: <
domain = R x R, where 'R = real numbers.
REFLEXIVE, since (Vz € R)[z < z].

Example 8.1.5, continued: B(-,-) brother of

domain = P x P, where P = all persons.
NONREFLEXIVE, since B(Joseph, Joseph) is
false.

Fact. A relation is reflexive if in its lists-of-relative
model, every member of the domain is listed as one
of its own relatives.

Fact. A relation is reflexive if its matrix model
has 1’s down the main diagonal.
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SYMMETRY PROPERTY of RELATIONS

A binary relation R on a set S is symmetric if
and only if

(Va,y € S)[R(x,y) — R(y, )]

Example 8.1.2, continued: <
domain = R x R, where R = real numbers.
NONSYMMETRIC, since # < 7, but 7 £ 7.

Example 8.1.5, continued: B(-,-) brother of
domain = P x P, where P = all persons.
QUESTION: If George is Bill’s brother, does that

imply that Bill is George’s brother?
YES or NO

Example 8.1.3, continued: FE(-,-) eats
domain = A x A, where A = animal species.
There are some symmetric pairs, such as ants and
anteaters. Nonetheless, NONSYMMETRIC, since

there also exist nonsymmetric pairs.
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Fact. A relation is symmetric iff
VaVy [y occurs in the list of relatives of x
— @ occurs in the list of relatives of y].

Fact. A relation is symmetric iff the relational
matrix is symmetric around the main diagonal.

Example 8.1.9: Some familial relationships are
symmetric: spouse, sibling, cousin, in-law. Notice
that none of them implies either an age difference
or a gender.

Example 8.1.10: Some other familial
relationships are non-symmetric: husband,
sister, niece, parent. Each of them implies either
an age difference or a gender.

CLASSROOM EXERCISE

Construct a 2-person domain in which
step-grandfather-inlaw-hood is symmetric.
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ANTISYMMETRY PROPERTY OF RELATIONS

A binary relation R is antisymmetric ift

(Vo,y)[R(z,y) A R(y,z) — o=y

Example 8.1.2, continued: <

domain = R x R, where R = real numbers.
ANTISYMMETRIC, since

TSy Nysxr = =y

Example 8.1.5, continued: B(-,-) brother of
domain = P x P, where P = all persons.
NON-ANTISYMMETRIC

Example 8.1.3, continued: M(-,-) mother of

domain = P x P, where P = all persons.
ANTISYMMETRIC, vacuously.

CLASSROOM EXERCISE

Let R be a relation that is both symmetric and
antisymmetric. Prove that no element of its
domain is related to any element other than
possibly itself.
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TRANSITIVITY PROPERTY OF RELATIONS

A binary relation R is transitive if and only if
(Va,y, z)|[R(z,y) A R(y, z) = R(z, 2)]

Example 8.1.1, continued: <

domain = R x R, where R = real numbers.
TRANSITIVE, since

r<y Ny<z = xr<z

Example 8.1.2, continued: B(-,-) brother of
domain = P x P, where P = all persons.

QUESTION: Is your brother’s brother your
brother?

YES or NO

Example 8.1.7: M(-,-) mother of
domain = P x P, where P = all persons.
NONTRANSITIVE, vacuously.

Example 8.1.8: ancestor of
domain = P x P, where P = all persons.

TRANSITIVE
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Prop 8.1.1. Let R be a relation on a set S. Then
R is transitive if and only if

(Vn € ZT)[R" C R

Pf: (<) R?C R = R s transitive.

(=) mathematical induction. ¢
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8.3 REPRESENTING RELATIONS

A binary relation is conceptualized as a boolean-
valued predicate on a cartesian product of two sets.
We have already seen three combinatorial represen-
tations:

1. a set of ordered pairs

2. a list of lists-of-relatives

3. a matrix

We now introduce a conceptually powerful visual
representation.

DEF: A digraph comprises a set whose elements
are called vertices and a set whose elements are
called arcs. To each arc is associated a vertex
called its head and a vertex called its tail. We
say the arc goes from its tail to its head.
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DEF: The digraph representation of a binary
relation R from a set S to a set 1" has S U T as its

vertex set. For x,y € S, there is an arc from x to y
if R(x,y).

When S # T, the digraph is often drawn so that
set S is represented in the left column and 7' in the
right column.

Example 8.1.7, continued:

Q:{<17A>7 <1aB>7 <27C>7 <37A>7 <370>}

S T

1 A
2 B
3 C
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If the relation is from a set S to itself, then the el-
ements of S are placed in conceptually meaningful
locations.

Example 8.3.1: Let S = {1,2,...,14}, with
R(x,y) if and only if these two conditions hold:

(1) x properly divides y.

(2) There is no number u such that x properly
divides z and w properly divides y.

1
e ———a F N,
Z%LLj o
Y\ '
4 o 9 10 15 14
/o

8 12

The relation of proper divisibility is not reflexive;
1t 1s not symmetric;

1t 1s not transitive;

however, it is anti-transitive.
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DIGRAPHS and RELATIONAL PROPERTIES

Prop 8.3.1. A relation R is reflexive iff there is a
self-loop at every vertex of its digraph.

)

Prop 8.3.2. A relation R is symmetric iff when-
ever there is an arc from x to y in its digraph,
there is also an arc from y to .

.,

Prop 8.3.3. A relation R is antisymmetric iff
whenever there is an arc from x to y in its digraph,
with x # y, there is no arc from y to x.

4//'::%71N,

Y\ '
4 6 9 10 15 14
'

/

8 12
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Prop 8.3.4. A relation R is transitive iff whenever
there is a directed path from x to y in its digraph,
there is also an arc directly from x to y.

Example 8.3.1, continued: Compare these
graphics to the matrix representation.

N

3 4 5 6 7
10 1 0 1

o

9 10 11 12 13 14
0 0O 1

0 N O O & WON =
—h

— —r
N O o ©

—h
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O O O O O O O O O O O O O =
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—h
A
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COMPUTING R» WITH A DIGRAPH

To calculate R™ from the digraph for R, simply list
the ordered endpoint pairs for each directed path
of length n.

Example 8.3.2: Consider this relation:
R = {<17 2)? <27 3)? <37 3)? <37 4)? <47 1>}

1 2

R* ={(1,3),(1,4),
(2,1),(2,3),(2,4),
(3,1),(3,2),(3,3),(3,4),
(4,3),(4,4)}
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8.4 CLOSURES OF RELATIONS

DEF: The closure of a relation R with respect
to a property is the intersection of all relations R
containing F.

Prop 8.4.1. The reflexive closure of a relation R
on a set S is the union RU {(s,s)|s € S}. %

Example 8.4.1: The reflexive closure of

the relation sibling of

is the relation has the same two parents.

Example 8.4.2: The reflexive closure of proper
divisibility is divisibility.
The reflexive closure of a relation could be

represented digraphically be drawing a self-loop
at each vertex that did not already have one.

In the matrix representation, one could write 1’s
down the main diagonal.

Prop 8.4.2. The symmetric closure of a relation
R is the relation R U R™1.
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CLASSROOM EXERCISE

Is siblinghood the symmetric closure of
brotherhood?

Prop 8.4.3. The transitive closure of a relation R
on a set S is the relation

R* = [j R’
j=1

Example 8.4.3: the relation parent of
The transitive closure is proper ancestor of.
The reflexive, transitive closure is ancestor of.

CLASSROOM EXERCISES

Q1. What is the antisymmetric closure of brother-
hood?

Q2. To whom are you related under the transitive

closure of the symmetric closure of parent-
hood?
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8.5 EQUIVALENCE RELATIONS

DEF: An equivalence relation is a binary relation
that is reflexive, symmetric, and transitive.

Example 8.5.1: Set S = {a,b,¢,d,e, f} and

R ={ (a,a),(b,),(b,c),(c,b),(c,c), (d,d),(d,e),
(d, f). (e, d), (ee), (e, f), (f.d), (f.e), (f. ) }

a b c¢c d e f
(’ d al 1
a b 1 1

C 1 1

d 1 1 1
e f

e 1 1 1
b C
<O <
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Prop 8.5.1. Let R be an equivalence relation.
Then every component of the digraph of R is a
complete digraph. &

Cor 8.5.2. An equivalence relation induces a par-
tition on its domain.

Pf: The vertex set of each component of the di-
graph is a cell of the partition. &

Prop 8.5.3. Let R be an equivalence relation.
Order its domain so that the elements of each cell
of the induced partition occur contiguously. The
resulting matrix represention has blocks of square
matrices of all 1’s down its main diagonal and has
all zeroes for its other entries. &
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FINITE EQUIVALENCE RELATIONS
Example 8.5.2: 2 x 2 checkerboards

R P

__________ T = = = = = = = = = = = = [ = = = = = = -
I
I
|
I

e dEFT N

There are 16 checkerboards. Checkerboard z is
related to checkerboard y if it can be transformed
into y by a rotation or by a reflection.

Example 8.5.3: relation R = sibling of
domain = all persons

The reflexive, trans. closure of R is an eq rel. It
partitions all of humanity into equivalence classes

of (full) siblings.
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INFINITE EQUIVALENCE RELATIONS

Example 8.5.4: domain = rational fractions
p
{5 ‘p,qé Z,Q#O}

Then a and ¢ are related if ad = be

b d

The partition cells are rational fractions of equal
value.

COUNTING PROBLEM (solved in w4205): How
many cells are there if p,q € {1,...,10}7

Example 8.5.5: domain Z

eq. rel. = congruence mod 3

Equivalence Classes:
0]s={...,—6,-3,0,3,6,9,...}
1]3={...,—5,—-2,1,4,7,10,...}
2]3={...,—4,-1,2,58,11,...}

Example 8.5.6: domain = propositions on p, ¢
(infinite domain — arbitrarily long strings)
eq. rel. = logical equivalence

N.B. there are 2% cells to this partition
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8.6 PARTIAL ORDERINGS

DEF: A partial ordering is a binary relation <
that is reflexive, antisymmetric, and transitive.

DEF: A partially ordered set or poset is a pair
(S, <) consisting of a set and a partial ordering on
that set.

Example 8.6.1: domain: SAT scores (M, V)
relation: double domination

(800, 800)

TN

(750, 660) (640, 710)

(620, 590)
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NOTATION: We write x < y it z <y and x # y.

DEF: An element y covers an element x in a poset
if <y and (Au)[z < u < y].

DEF: In a Hasse diagram for a poset, one draws
only the cover relations.

Example 8.6.2: (Z7,\) the division lattice*
Special Case: {n |1 <n < 24}

24 16

4
18 12 8

\

22 9 6 4 10 15 14 21

N\&7~

T

Fact. The transitive, reflexive closure of the cover
relationship is the poset itself.

N

0

X~
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Prop 8.6.1. Divisibility of positive integers is a
partial ordering.

Pf:
Reflexive: a number divides itself.

Antisymmetric: if x\y and y\z, then z =y.
Transitive. if x\y and y\z, then =z\z. O

Example 8.6.3: (X, C) the subset lattice
Special Case: X = {a,b,c}

abc
e
ab ac bc

a b C
)
Reflexive: S C S.
Antisymmetric: it S CT and T'C S then S =1T.

Transitive. if S C T and T C U then S C U.

*a “lattice” is a special kind of poset.
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DEF: A partition P of a set S refines another par-
tition .S if every cell of P is a subset of some cell of

0.

Example 8.6.4: the refinement lattice
domain: partitions of a set S

relation: inverse refinement s refined by
Special Case: S = {a,b,c,d}

a-b-c-d

//"/( %-cd

ab-c-d ac-b-d ad-b-c a-bc-d

e

abc-d ab-cd ac-bd abd-c ad-bc acd-b a-bcd

N e

abcd

DEF: Let P = (p1,...,p;) and Q@ = (q1,...,qx) be
two partitions of the same integer. Summation
dominance is the relation

P=(p,...,p;) < Q= (q1,q)
if and only if

Vt>Dpr++p < g1+ + @)
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Example 8.6.5: summation dominance lattice
domain: partitions of an integer n

relation: summation dominance

Special Case: n = 7.

/

6|1
S

2
PN
43 S11
~_ _—
421
\

331
4111

N
3211

311ﬁ 22\21
~N

221|11

211111
|
T1T11111
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INCOMPARABILITY

DEF: Two elements x,y from a poset (X, R) are
said to be comparable it either xRy or yRx and
incomparable otherwise.

Example 8.6.1, continued: College Bd Scores
under double domination. Incomparable pairs:

(500,700) and (730,580)
Example 8.6.2, continued: division lattice
Incomparable integers:
9 and 20

Example 8.6.3, continued: subset lattice
Incomparable subsets:

{a,b} and {b,c}

Example 8.6.4, continued: ref’'ment lattice

Incomparable partitions:
abc-d and ab-cd

Example 8.6.5, continued: sum dominance
Incomparable partitions:

4111 and 322
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TOTAL ORDERINGS and LINEAR EXTENSIONS

DEF: A partial ordering is called total, complete,
or linear if every pair of elements is comparable.

Example 8.6.6: (R, <)

Example 8.6.7: alphabetic strings under
lexicographic ordering.

DEF: A linear extension of a partial ordering R
on a set S is a total ordering ¢) on .S such that

RCQ.

Thm 8.6.2. Every partial ordering R on a finite
set S has a linear extension.

Pf: Remove any minimal element and put it first.
Then follow it inductively by a linear extension of
the rest of the poset. &
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Example 8.6.1, continued: SAT scores
relation: double domination

(800, 800)

TN

(750, 660) (640, 710)

(620, 590)

linear extensions:

(620, 590)
(620, 590)

(750, 660)
(640, 710)

(640, 710)
(750, 660)

(800, 800)

<
< (800, 800)

< <
< <
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Example 8.6.2, continued: division lattice
Special Case: {n |1 <n < 24}

22 9 6 4 10 15 14 21

N\&7~

1917 11 3 2 S5 7 13 23

%

y

linear extension:
1<2<3<5<T7T<K<11<K13<K17<19<23
<4<6<9<10<14<15<K21 K22
<8<K12<K<18<K 20
<16 <24
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Example 8.6.3, continued: subset lattice
Special Case: X = {a,b,c}

abc
e
ab ac bc

5>
Nt

linear extensions:
D<a<b<c<ab<ac<bc<abe

D<a<b<ab<c<ac<be<abe

An algorithm that arranges the elements of a poset
into such a sequence is sometimes called a topo-
logical sort.

Remark: Most familiar sorting algorithms can be
readily adapted to the task of topological sorting.

Remark: A “topological sort” has almost
nothing to do with topology.
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LUB’s GLB’s and LATTICES

DEF: An upper bound in a poset (S, <) for a sub-
set T" C S 1s an element v € S such that

(Vt € T)[t < u]

A least upper bound (abbr. lub) for a subset T
of a poset (.5, <) is an upper bound u such that if
v is another upper bound, then u < v.

DEF: A lower bound in a poset (5, <) for a
subset T' C S i1s an element v € S such that

(VteT)u <t
A greatest lower bound (abbr. glb) for a subset

T of a poset (S, <) is a lower bound u such that if
v is another lower bound, then v < u.
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Example 8.6.2, continued: division lattice
Special Case: {n |1 <n < 24}

22 9 6 4 10 15 14 21

N\&7~

1917 11 3 2 S5 7 13 23

\1%
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Example 8.6.3, continued: subset lattice
Special Case: X = {a,b,c}

abc
e
ab ac bc

5>
Nt

LUB(S,T) = SUT.
GLB(S,T) = SNT.
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Example 8.6.4: NOT a lattice

b and ¢ have no glb

d and e have no lub
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