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7.1 RECURRENCE RELATIONS

DEF: A recurrence system is a finite set of
initial conditions

ap = Cp, ay — Cq1, e oey a4 — C4
and a formula (called a recurrence relation)
An = f(CL(),...,CLn_1>

that expresses a subscripted variable as a
function of lower-indexed values. A sequence

<a, > = ap, a1, a2, ...

satisfying the initial conditions and the recurrence
relation is called a solution.

Example 7.1.1: The recurrence system

ag = 0 initial condition

an, = QAn_1+2n—1 recurrence relation
has the sequence of squares as its solution:

<a,> = 0,1, 4,9, 16, 25, ...
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NAIVE METHOD OF SOLUTION

Step 1. Use the recurrence to calculate a few more
values beyond the given initial values.

Step 2. Spot a pattern and guess the right answer.
Step 3. Prove your answer is correct

(by induction).

Example 7.1.1, continued:
Step 1. Starting from ag = 0, we calculate

ap = ap+2-1—-1 =0+1 =1
a, = a1+2-2—1 =143 = 4
a1 = ap+2-3—1 =445 =9
ap = ag+2-4—1 = 947 = 16
Step 2. Looks like f(n) = nZ.
Step 3. BASIS: ag = 0 = 0% = f(0).
IND HYP: Assume that a,_; = (n — 1)
IND STEP: Then

ap, = Gp_1+2n—1 from the recursion
= (n—1*+2n—1 by IND HYP
= (n*—2n+1)+2n—-1 = n? %
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APPLICATIONS

Example 7.1.2: Compound Interest
Deposit $1 to compound at annual rate r.

Po = 1 Pn = <1 + T>pn—1

EARLY TERMS: 1,1+ r, (1+7)2, (1 +7)3,...

APPARENT PATTERN: p, = (1+7)"

Pf: BASIS: True for n = 0.
IND HYP: Assume that p,_1 = (1 +7)"!
IND STEP: Then

pn = (1 4+7)pn_1 by the recursion
= (1+7)(1+7)"' by IND HYP
= (14+7)" by arithmetic
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Example 7.1.3: Tower of Hanoi

RECURRENCE SYSTEM

ho = 0

hy = 2hn_1+1
SMALL CASES: 0, 1, 3, 7, 15, 31, ...
APPARENT PATTERN: h,, =2" —1

BASIS: hg =0=2% -1
IND HYP: Assume that h,,_; =271 —1
IND STEP: Then
h, = 2h,_1+1 Dby the recursion
= 22" ' ~1)+1 by IND HYP
= 2" —1 by arithmetic &
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However, the naive method has limitations:
e It can be non-trivial to spot the pattern.

e It can be non-trivial to prove that the apparent
pattern is correct.

Example 7.1.4: Fibonacci Numbers
fo =0 f1 =1
fn — fn—1+fn—2

Fibo seq: 0,1,1,2,3,5,8,13,21,34,55, ... .
APPARENT PATTERN (ha ha)

fo = in\/g (1+V5)" = (1-V5)"]

It is possible, but not uncomplicated, to simplify
this with the binomial expansion and to then use
induction.
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Sometimes there is no fixed limit on the number of
previous terms used by a recursion.
Example 7.1.5: Catalan Recursion

Co — 1

Cp, = CoCp—1+ C1Cp_o+ - -4+ cp_1co forn>1

SMALL CASES

ciT = cpco=1-1 =1

co = cpc1 +cico=1-14+1-1 = 2

c3 = cpcy +cicg+cocpg=1-24+1-14+2-1 = 5
ce, = 1-54+1-24+2-14+5-1 = 14
1-1441-54+2-2+5-1+14-1 = 42

Catalan seq: 1, 1, 2, 5, 14, 42, ....

Cs

SOLUTION: ¢, — —° <2”>
n+1\n

The Catalan recursion counts binary trees and
other objects in computer science.

ADMONITION

e Most recurrence relations have no solution.

e Most sequences have no representation as a re-
currence relation. (they are random)
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7.2 SOLVING EASY RECURRENCES

We identity a type of recurrence that can be solved
by special methods.

DEF: A recurrence relation
An = f(CL(), cee 7an—1>

has degree k if the function f depends on the
term a,,_j and if it depends on no terms of lower
index. It is linear of degree k if it has the form

p = ClGpn_1 + C20pn_o~+ -+ cran_i + g(n)

where each c;, is a real function and ¢, # 0. It is
homogenous if g(n) = 0.

Example 7.2.1: The recurrence system
ag = 0 initial condition
an, = QAn_1+2n—1 recurrence relation
is linear of degree one and non-homogeneous.

Remark: Similarly, the interest recursion and the
Tower of Hanoi recursion are linear of degree one
and non-homogeneous.
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Example 7.2.2: Fibonacci Numbers

fo =1 fi = 1 initial conditions

frn = fa—1+ fn_2 recurrence relation

The Fibonacci recurrence is linear of degree two
and homogeneous.

Example 7.2.3: Catalan Recursion
co = 1 initial condition

Cn, = CoCp—1+CiCn—o+ -4+ cp_1co forn>1

The Catalan recusion is quadratic, homogeneous,
and not of fixed degree.

Remark: Solving the Catalan recursion is well
beyond the level of this course.
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HOMOG LINEAR RR’s w. CONST COEFF’S

DEF: The special method for solving an
homogeneous linear RR with constant coeft’s

Ap = ClQp—1 + C20p—o2 +  + CrQpn_k
1s as follows:
1. Assume there exists a solution of the form
a, = T
and substitute it into the recurrence:
o= e e 4 ™R

Cancelling the excess powers of r and normalizing
yields what is called the characteristic equation:

rk - clrk_l — CQTk_2 —

cii—cp = 0
2. Find the roots of the char eq,
T1,72, . ., Tk
which are called the characteristic roots.
3. Form the general solution
a, = air]{ +asry + -+ agry

4. Use initial conditions to form k& simultaneous
linear equations in aq, ..., a and solve for them.
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DEGREE ONE, LINEAR HOMOGENEOUS

Example 7.2.4: General RR of Degree 1

apg = d initial condition
_ n—1 .
a, = Ca recurrence relation
chareq: r—c¢ = 0 hasrootr=c

general solution: a,, = ayc”
simultaneous linear equations: d = a;c = a;
solution to simult lin eq: a1 = d

problem solution: a,, = dc"

Example 7.2.5: Compound Interest again
Deposit $3 to be compounded annually at rate r.
po = 3
pn = (1+7)pn-
Solution: p, = 3(1 +r)"
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DEGREE TWO, LINEAR HOMOGENEOUS

Example 7.2.6: Easy degree two recurrence.
ag — 1 ay =— 4

An, = 90p—1 — 6ap_2

char eq: 7> =57+ 6 =0 hasroots r; =3 1y = 2.
gen sol: a, = a13"™ + ax2"

apg = 1 = a1 + Qo

simult lin eqns {
a1 = 4 = 30&1—|—2()ég

have solution: a1 =2 a9 = —1.
= problem solution: a, =2-3" — 2"

Changing the initial conditions to
ag — 2 ap — 5

yields

apg = 2 = a1 + Qo

simult lin eqns {
ay — 5 = 30&1—|—2()ég

with solution: a1 =1 a9 = 1.
= problem solution: a,, = 3" + 2"
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Example 7.2.7: Fibonacci Numbers again

fo =0 f1 =1
fn — fn—l + fn—2
char eq: 7> —r — 1 = 0 has roots
1++/5 1—+/5
5 and 5

Etc. The complete solution is

. 1 (1+v5) 1 [1-V5)\"
"5 2 NG 2
1 mn mn
_ 2n¢5[<1+¢5> ~ (1= V5)"]

/2] .

1 n 29
S 5)
on <2j+a£><vr

j=0

For instance,

=00 )

— 1B+50+%]—
= = —

coursenotes by Prof. J. L. Gross for Rosen 6th Edition



Section 7.250lving Easy Recurrences 7.2.7

DEGREE THREE, LINEAR HOMOGENEOUS

Example 7.2.8:
ag — 2 ay =— 5 as — 15

a, = 6a,-1 — lla,—o + 6a,_3

char eq:
0 =rP—6r:4+11r—6 = (r—1)(r —2)(r —3)

char roots:

r = 1,2,3
gen sol:
a, = a1 1"+ ay-2" 4+ a3z - 3"

simult lin eq:

2 = a1+ as+ as
ap = 9 = a1+ay-24+a3-3
ay, = 15 = o1 +a9 -4+ as-9

agp =

coeff solns:
041:1, 042:—1, 043:2

unique sol:
ap, =1-—-2"42.3"
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NONHOMOGENEOUS LINEAR RECURRENCES

We split the solution into a homogeneous part and
a particular part.

Example 7.2.9: Tower of Hanoi, again
hg = 0
hn — 2hn—1 + 1

assoc homog relation iLn = QiLn_l has
homogeneous solution h, = a2”

assoc partic relation hn = 2hn_1 + 1 has
particular solution h,, = —1

simult lin eqn:
ho = 0 = iLo—l-hO = a20 -1
has solution a« = 1

problem solution: h, = 2" — 1.

Remark: The form of the particular solution usu-
ally resembles the function of n. In this case

g(n) =1
is a constant function. So we tried h, = K, and

we solved the equation K = 2K + 1, and obtained
K =-1.
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Example 7.2.10:
a1 = 3
a, = 30,—1+2n

homog soln:

a, = a3"
partic rec rel:

CALn = SCALn_l + 2n
trial soln:

a, =cn+d
Thenen +d = 3le(n — 1) + d] + 2n,
ie., 0 = n(2c+2)+ (2d — 3¢)
= c=-1, d=-3/2
partic soln:

ap, =—n—3/2
general soln:

anp =a3” —n—3/2
simult eq:

ap =3=a3—-1-3/2=3a—5/2
coeff solns:

a=11/6
unique sol:
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REPEATED ROOTS

Example 7.2.11: A recurrence system
apg — —2 ap = 2
an = 4ap_1 —4a,_o
char eq: 72 —4r +4 = 0 has roots 2, 2.
gen sol: a, = a12" + asn2”
. . agy = —2 = o
simult lin eqns {
a1 = 2 = 201 4+ 2a9

have solution: ay = —2 oy = 3.
problem solution: a,, = (—2)-2" 4+ 3-n2"
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7.3 DIVIDE-AND-CONQUER RELATIONS

The bag-of-tricks used for recurrence relations is
really quite deep.

DEF: A divide-and-conquer recurrence has the fol-

lowing form:
n

fn) = af(;

) + g(n)

Thm 7.3.1. A divide-and-conquer recurrence
fn) = af(3)+e

in which b is a positive integer and ¢ > 0 has the

following property:

O(nlogv )  ifaq > 1

fm)e{omgm ifa=1

Example 7.3.1: Binary Search can be evaluated
by Thm 7.3.1.

by = 1
Then b,, € O(logn) by Thm 7.3.1.
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Example 7.3.2: MergeSort needs a different
approach, because its nonhomogenous term is not a
constant.

s1 = 0
Sp = 28,0+n forn>1
The substitutions
n=2% and t;,= sq

change this divide-and-conquer recurrence to the
following linear recurrence:

to = 0
tr = 2,1 +2% fork>0
sol: tg, = k- 2%

Then reverse-substitute to obtain

sol: s, =nlgn.
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7.4 GENERATING FUNCTIONS

Any sequence ag, a1, as,... can be encoded as a
formal infinite power series

aoxo + alazl + a2x2 + ...

DEF: An (ordinary) generating function for a
sequence ag, a1, as, ... is a function whose formal
power series (Maclaurin series) has that sequence
as its sequence of coefficients.

Example 7.4.1: The generating function for the

sequence 1,1,1,... is the function
— 2., = J
- = 1l4+z4+2" + —Zaz
7=0
Example 7.4.2: The generating function for the
sequence 1,2,4,8, ... 1is the function
1 . >
— - J pd
- = 1242”4 _222:1:
]:
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RATIONAL FUNCTIONS

DEF: A rational function is the quotient of two
finite polynomials.

:1:—|—:1:2
1 —3x + 322 — 23

Example 7.4.3:

Remark: Rational functions are among the most
frequently encountered generating functions. One
may think of a closed form as a way of “generat-
ing” the coefficients of a power series. In partic-
ular, division of polynomials generates the power
series.

Example 7.4.4: Long division of polynomials

r+ 4z + 923 + 162* + - -

1—3x+322—23 | o+ 22

Prop 7.4.1. Every rational function is the OGF
for a sequence.

Pf: As illustrated by Example 7.4.4.
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ENCODING A GIVEN SEQUENCE AS AN OGF

Several principles are valuable in constructing an
OGF for a given sequence. Proofs are omitted.

Prop 7.4.2. Two generating functions

©.@)

flx) = Zakxk and g¢g(x Zbkx

k=0
have as their sum the generating funcmon

©.@)

(f+9)x) = fl@)+g(x) = > (ar+by)a"

k=0

Example 7.4.5: The Hanoi OGF
0+ 1z + 32 + 72° + 152% + - -

i1s the sum of the OGF’s

= ) (~1)2* and — Z

k=0 =

so its generating function is

—1 n 1 B x
l—2 1-2¢  (1—2)(1-22)
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Prop 7.4.3. Two generating functions

©.@)

f(x) = Z apx® and g(z) = Z bra”
k=0 k=0
have as their product the generating function

f@glx) =) | D asbej | "

k=0 \ j=0

DEF: The convolution of the sequences (a;) and
(br) is the sequence

(L)

Example 7.4.6: The sequence 1,2,3,4... is the

convolution of the sequence 1,1,1,... with itself.
Thus, its OGF is
1

(1 — )’

Prop 7.4.4. Multiplication of a OGF by x shifts
all the coefficients one position to the right. &

Example 7.4.7: The OGF for 0,1,2,3,4... is
x

(1 — )’

coursenotes by Prof. J. L. Gross for Rosen 6th Edition



Section 7.4 Generating Functions 7.4.5

With the theoretical tools now in hand, and with
some ingenuity, we can construct many useful gen
fcns.

Example 7.4.8: Construct a gen fcn for the se-
quence of squares:

0, 1, 4,9, 16, 25, ...

n? +n
2

Idea: 1+2+---4+n =
By Example 7.4.7,

2x 5
(1= ) generates n° +n
and
X
(1= 1) generates n
Thus,
2x x B 2’ + o
(1-=p (1-2)? (1-a)

is a gen fcn for n”.
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EXTENDED BINOMIAL THEOREM

Review: For any real number v and integer k, we
define the falling power

Wt = wu—1)-(u—k+1)

and we define the extended binomial coeff

k
(1) = 7

Extended Binomial Theorem. For every x such
that |x| < 1 and for every u € R,

1t = Y (1)a"

Pf: This is an immediate application of
Maclaurin’s theorem. &
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Cor 7.4.5. The OGF for the sequence
.l
I

(1 —z)" " =

1S
x’l"

<1 — x)r—l—l

Example 7.4.9: OGF for the sequence (n3).

Step 1. n? = n2 + 3n2 + ni.
3 2 1
3y — gl = n= n-
Smp2<”>“6<m>+6<m>+1<u>
By Cor 7.4.5, the OGF for (n3) is

613 n 612 n T _:13—|—4:1:2—|—:1:3
1-2)* (1-22 (1-2?2  (Q1-2)7
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USING GEN FCNS TO SOLVE RR’s

Using generating functions provides a single best
method to solve RR’s that avoids the need to
memorize an endless bag of tricks.

Example 7.2.1, continued: We again solve the
recurrence system

ag = 0 a, = Qp—1+2n—1
this time, with generating functions.

ant"” = ap_12" +2nz" + (=1)z"™ mult by 2"

i a,x" = i Gp_12" + i 2nx"™ + i(—l)x”
n=1 n=1 n=1 n=1

Alx) —ap = x i 1"+ i 2nz" + i(—l)x”
n=1 n=1 n=1
Alz)—0 = =z i anz" + i 2nz" + i(—l)x”
n=0 n=1 n=1

Alx) = zA(x) + Z 2nz" + Z(—l)x”
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oo oo
Alx) = zA(x) + Z 2nz" + Z(—l)x”
n=1 n=1

A(x) —zA(x) = 2 Z nx" — Z x"

Al@) - wA@) = 5 33;)2 - =
Al)(1—2) = (ff _25;2
Alx) = (ff _25;3

Using Example 6.4.8, we recognize this as the OGF
for the sequence of squares.

This method would work on Fibonacci or
Catalan, but let’s do some easy examples.
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Example 7.2.6, continued: deg 2 recurrence.
ag = 1 a; = 4
a, = 90p_1 — 6a,_9

recall problem solution: a, = 23" — 2"

This time, with generating functions.

anx" = ban_1x" — 6a,_ox" mult by 2"

o0 o0 o0

Z a,xr’ = 5 Z Ap_1X" — 6 Z Y
n=2 n=2 n=2

o0 o0 o0

Z a,r'' = bx Z a,_ 12"t — 6x° Z DY
n=2 n=2 n=2

o0 o0 o0

Z a,r'"' = bx Z a, " — 6x° Z AnT"

n=2 n=1 n=0

A(x) — 1 —4x = 52[A(z) — 1] — 62°A(x)
A(z) =1 —4x = 5zA(x) — 5z — 62 A(2)
= A(@)[l-5x+62°] = 1—2

and therefore,

1— 2 1
(1-22)(1-32) 1-3z 1-2

A(x) =
Thus, a, = 2-3" — 27,
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PARTIAL FRACTIONS

How do we obtain this decomposition?

1z 2 1
A = j— -
@) = G230 ~ 1-3: 1-2z

ANSWER: like this!

1—x B b c
(1—-22)(1—3z) —3z 1-22
b(1 —2z) + ¢(1 — 3x)
(1 —2z)(1 — 3z)
(b+c¢) — (2b+ 3¢)x
(1 —2z)(1 — 3x)

Solving the simultaneous equations

b+c =1
2b+3c =1
yields the solution b = 2 c = —1.

Remark: These straighforward steps replace the
bag-of-tricks for nonhomogeneity and repeated
roots.
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Example 7.2.8, continued: Hanoi again
hg = 0
h, = 2h,_1+1

recall problem solution: h, = 2" — 1.

This time, by generating functions.

hp,x" = 2h,_12" + 2" mult by 2"
SIS SN S
n=1 n=1 n=1
Zhna:” = Qthn_lx”_l + Zx”
n=1 n=1 n=1
H(z)—0 =2zH(z) + —

r)—0 =2xH(x

1l —2x
H(z)[1—2z] = ; - and therefore
—x
T 1 1

H@) = =2 ~ 1Tom 1-2

Thus, h,, = 2" —1.
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Example 7.2.11, continued: recurrence sys
apg — —2 ap = 2
ap — 4an—1 - 4an—2

recall problem solution: a,, = (=2)-2"™ 4+ 3 - n2"”
This time, with generating functions.

anr”’ = 4anp_1x" —4a,_ox" mult by 2"
o0 o0 o0
E a,xr"’ = 4 E Up_12" — 4 E Ay 2T"
n=2 n=2 n=2
o0 o0 o0
n __ n—1 2 n—2
a,r° = 4x Ay 1T —4x Ay
n=2 n=2 n=2
o0 o0 o0
E a,r"’ = 4dx E a,x™ — 4z E A,

A(z) +2 — 22 = 4a[A(z) + 2] — 42 A(2)
A(z) +2 - 22 = 4zA(z) + 8z — 42*A(x)

A(x)[1 — 4x + 42%] = 10z — 2, and therefore,

10z — 2 o6x 2
A = = —
@) = 022 T G-z 1-22

Thus, a, = 3n-2" — 22",
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