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Section 6.1 Intro to Probability 6.1.1

6.1 INTRO TO PROBABILITY

DEF: The study of probability uses special jargon.
e A sample space is a nonempty set.

e An experiment is a process that produces a
point in a sample space.

e An event is a subset of a sample space.

e The event space is the power set of the sam-
ple space.

Experiment 6.1.1: Toss a coin.
Sample space: U ={H,T}
Event space: P(U) = {0,{H}{T},{H,T}}.

Remark: Often, some of the more interesting
events have special names.

Experiment 6.1.2: Toss two coins.
Sample space: U ={HH,HT,TH, TT}
Event space: subsets of U

Named events: match = {HH,TT}

at least one head = {HT,TH,HH}
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6.1.2 Chapter 6 Discrete Probability

UNIFORM PROBABILITY MEASURE

DEF: The uniform probability measure on a
finite sample space .S assigns to each event E the

probability
_ Bl

Experiment 6.1.1, continued: coin toss.
Sample space: U ={H,T}

Event @ {H} {T)} {H,T)

1 1
Probability 0 - — 1
2 2

This example is readily generalized.

Experiment 6.1.2, continued: two coins
Sample space: U ={HH,HT,TH, TT}

Event Name at least one head one of each

Event (HT,TH,HH} {HT,TH)
3 2
Probabilit = =
robability 1 1
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Experiment 6.1.3: roll a die
Sample space: U = {1,2,3,4,5,6}

Event Name odd even 2 mod 3
Event {1,3,5} {2,4,6} {2,5}
3 1 3 1 2 1

Probability c=3 -3 £ =3

Experiment 6.1.4: roll two dice

N N

Sample space: U = {il, .., 16, ..., 61,... ,66}
Event Name doubles sum 1S nine
Event {11,22,...,66} {36,45,54,63}
6 1 4 1
Probability — = — — = —
36 6 36 9

Experiment 6.1.5: roll three dice

N N

Sample space: U = {111,...,116, ..., 661,...,666}

Event Name triples doubles singles
Event {111, etc.} {112, etc.} {123, etc.}

6 1 90 5 120 5

Probability ——— — — 22 _ 2 29 _
POPAbLY 516 T 36 216 12 216 9
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6.1.4 Chapter 6 Discrete Probability

Experiment 6.1.6: A base-10 numeral is
randomly chosen from the range

000 ... 999

Q1: What is the probability that the numeral
contains no 3’s or 5’s?

Ans. There are 8 base-10 numerals
containing no 3’s or 5’s and 10% three-digit
numerals altogether. Thus, the probability is
8% 512
— = —— = 0.512
103 1000
Q2: What is the probability that the numeral
contains one 3 and no 5’s?

Ans. The 3 could occur as each of the three
digits. There would be 82 possibilities for the other
two digits. Thus, the probability is

3-8 192

= = 0.192
103 1000
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DEF: (standard) deck of cards

2% 3% ... 108 J& O L& Ad
20 30 ... 100 JO QO KO AS
20 30 ... 100 JO QU KO AQ
26 36 ... 106 & O K& Aé

Experiment 6.1.7: deal one card from deck

Sample space: standard 52-card deck

Event Name heart seven
Event {20,..., A0} {7, 70,70, 74}
13 1 4 1
Probability — = - — = —
52 4 52 13

Experiment 6.1.8: deal five cards from deck

Sample space: all possible 5-card hands.

Event Name Probability
<13> . <48>
4 of a kind L L

full house

3 of a kind <113> . <§> ' <418> ' <414>
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6.1.6 Chapter 6 Discrete Probability

INFINITE SAMPLE SPACES (optional)

If a sample space is finite, it is sufficient to
specity the probabilities of singletons, and to
infer the probabilities of compound events by
addition. However, this does not work for infinite
sample spaces.
Experiment 6.1.9: pick a natural number
Probabilities of singletons

0 = p(0) = p(1) =p2) = -
do not yield probabilities of infinite subsets:

p(even), p(power of two)

Uniform probability for an arbitrary set E of num-
bers is defined by the rule

J(E) =t HLEOAOL. o n =1}

n— 00 n

This illustrates why the most general kind of
probability measures (discussed elsewhere, but not
here) are assigned to the event space, rather than
to the sample space.
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PROBABILITY of the COMPLEMENTARY EVENT

Proposition 6.1.1. Let E be an event in a finite
sample space S, under the uniform probability
distribution. Then

p(E) =1—p(E)

Pf:
(1) |S| = |E|+|FE| by Rule of Sum
o 1S _ B, [E
5| S| 15]
3) 1 = p(lE])+p(E)
(4) p(E) = 1-p(E) &

Experiment 6.1.10: A (putatively fair) coin is
tossed 10 times. Find the probability of at least
one tail.

Answer : p (#tails > 1) = 1 — p(10 heads)
1
1] — ——
1024
1023
1024
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6.1.8 Chapter 6 Discrete Probability

PROBABILITY of a UNION of EVENTS

Proposition 6.1.2. Let E4 and Es be events in a
finite sample space S, under the uniform
probability distribution. Then

p(E1 U E>) = p(E1) +p(E:2) — p(Er N Es)

Pf:
|E1 U E2| — |E1| + |E2| - |E1 M E2| by Incl-Excl
[E1 U B[ _ B | [Ea| B 0 By
S| S| |S] S|
p(E1UE3) = p(E1) +p(E2) — p(E1 N Es) &

Experiment 6.1.11: An integer is chosen from
the interval [1,...,100]. Find the probability that
it is divisible either by 6 or by 15.

Solution:
p(6\n vV 15\n) = p(6\n)+p(15\n) — p(30\n)
16 6 3
= — 4 —
100 100 100
19
100
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6.2 PROBABILITY THEORY

In §6.1 we defined the uniform probability measure
for an event E in a finite sample space S:

pr(E) = %

In general, a discrete probability measure
assigns probabilities to all events of a finite or
countably infinite sample space.

DEF: A discrete probability measure assigns
to every subset E of a countable sample space S a
real number pr(F) satisfying these three axioms:

Al. 0 < pr(E) < 1, for every event £ C S.
A2 pr(S) = 1.

A3. For any finite or countably infinite collection
of mutually exclusive subsets {A; : j € J} of
the sample space S,

pr| A = D pr(4))

j€J j€J
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6.2.2 Chapter 6 Discrete Probability

Example 6.2.1: Uniform probability measure
(§6.1) on a finite sample space is a probability
measure. The three axioms are easily verified.

Example 6.2.2: For any finite sample space .5,
assign to each possible outcome s € S, a number
p(s), such that

(1) 0 < p(s) <1
(2) Y. p(s) =1
scS

Then to any event E, we assign the probability

pr(E) = ) pl(s)

sck

TWO STANDARD EXAMPLES

Here are two non-uniform probability measures for
some familiar sample spaces.

DEF: The standard loaded coin has probability
p(H) =0.8 and p(T) = 0.2.

DEF: The standard loaded die has sample space
U=1{1,2,3,4,5,6}. Then assign the singleton {;}

- J
th bability —.
e probability 51

coursenotes by Prof. J. L. Gross for Rosen 6th Edition



Section 6.2 Probability Theory 6.2.3

PROPERTIES of PROBABILITY MEASURES

Prop 6.2.1. Let p be a probability measure on a
sample space S. Then

p(@) =0

Pf: p(S) = p(SUP) since S=SU
= p(S) + p(@) by Axiom A3 %

Prop 6.2.2. Let p be a probability measure on a
sample space S, and let I/ be an event. Then

p(E) = 1—p(E)

Pf: 1 = p(S) by Axiom A2
= p(EUE) since S=EUE

= p(E)+p(F) by Axiom A3 O
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BERNOULLI DISTRIBUTIONS

DEF: A Bernoulli distribution is a probability
measure on a sample space with exactly two
points.

Example 6.2.3: Flip standard loaded coin.
Sample space = {H, T}
Event space = {0, {H}, {T}, {H,T}}

pr({H) = = pr({T)) = =

Example 6.2.4: Roll a fair die.
Sample space = {1, 2, 3, 4, 5, 6}

pr(3) = % pr(=-3) = pr({1,2,4,5,6}) = g

Example 6.2.5: The standard loaded die induces
a Bernoulli distribution with

4 3
pr(even) = - and  pr(odd) = -
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NOTATION: Let U = {x,y} be a binary sample
space. Then the set

of length-n sequences in U is denoted U™.

REVIEW : The number of n-strings in {z,y} with k&
occurrences of x and n — k occurrences of y is

n
k
Prop 6.2.3. A Bernoulli distribution on {x,y}

p(xr) =p ply) =1-p

induces a probability measure on the sample space
{0, 1, ..., n} in which, for k =0,1,...,n

pr(k) = <Z>pk<1—p>”_k

is the probability of obtaining k occurrences of x
and n — k occurrences of y. &
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6.2.6 Chapter 6 Discrete Probability

DEF: A binomial probability distribution on
the sample space {0,1,...,n} is a probability
induced by a Bernoulli distribution, as in Prop
6.2.3.

Example 6.2.6: Flip standard loaded coin 10
times. Then for £k =10,...,10

10
pr(k heads) = <k> 0.8%0.210—*

CLASSROOM EXERCISE

Seven standard loaded dice are rolled.
What is the probability of three 5’s 77
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CONDITIONAL PROBABILITY

Example 6.2.7: A fair dime and a fair nickel
are flipped. An oracle tells you that at least one
of them is heads. What is the probability that the
other also is heads?

Analysis: If the oracle says the dime is heads, then
there are two equally likely cases for the nickel.

Similarly, if the oracle says that the nickel is heads,
then there are two equally likely cases for the dime.

Question: How many cases are there if the
oracle doesn’t say which coin?

Experiment: Program a computer to initialize
the variables n and h2 at 0. Run 10,000 trials.

On each trial, generate two random real numbers
between 0 and 1. If at least one is less than 0.5,
then increment the variable n by 1. If both are less
than 0.5, then also increment h2 by 1.

2
Calculate the fraction h—
n
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6.2.8 Chapter 6 Discrete Probability

DEF: Let p be a probability distribution on a
sample space U, and let Y be an event. Then the
conditional probability of event E given that
event Y has occurred is

p(ENY)
p(Y)

priE|Y) =

Example 6.2.7, continued:

p(HH A =TT)
p(=TT)

p(HH)  1/4 1

p(-TT) ~ 3/4 — 3

p(HH | ~TT) =

Example 6.2.8: Two fair dice are rolled. At
least one is a four. What is the probability that
both are fours?

p(44 A 1-or-2 4’s)

p(44 | 1-or-2 4’s) =

p(1-or-2 4’s)
_1/36 1
- 11/36 11
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INDEPENDENCE

DEF: Let pr be a probability distribution on a
sample space U.  Event E is probabilistically
independent of event Y if pr(E | Y) = pr(FE).

Prop 6.2.4. Let pr be a probability distribution
on a sample space U, and let event E be proba-
bilistically independent of event Y. Then event Y
is probabilistically independent of event E.

PE pr(E) = pr(E | Y) = pr(ENY)/p(Y).
Therefore,

pr(Y) = pr(ENY)

pr(E)
pr(Y NE)
= = pr(Y | & &
pr(B) e
Example 6.2.9: Roll two standard loaded dice.
Let Y be the event that the first die is a one, and
E the event that the sum is odd. Then

3 4 24
pr(E) T R
pr(ENY) pr(12,14,16)
E|Y) = =
pr(E|Y) () /21
. 2/441+4/441+6/441 12 4
- 1/21 217
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6.2.10 Chapter 6 Discrete Probability

Example 6.2.10: Roll two fair dice. Let Y be
the event that the first die is a one, and E the
event that the sum is odd. Then

1 1 1
pT<E>—2§§—§ and
p(ENY p(12,14,16
pr(E|v) = PEOT) _ pU2ILIO
p(Y) 1/6
3/36 3 1
1/6 6

Remark: Disjoint events are usually NOT
probabilistically independent.
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RANDOM VARIABLES

DEF: A probability space is a pair consisting of a
sample space U, called its domain and a probabil-
ity measure on U.

DEF: A random variable is a real-valued
function on the domain of a probability space.

Remark: Since a random variable is a function, it
is not a variable, and it is not random.

Example 6.2.11: Flip a coin three times. Let
X (t) be the number of heads that occurs. Then

X(TTT) = 0
X(TTH) = X(THT) = X(HTT) = 1
X(THH) = X(HHT) = X(HTH) = 2

X(HHH) = 3

coursenotes by Prof. J. L. Gross for Rosen 6th Edition



Section 6.3 Bayes’s Theorem 6.3.1

6.3 BAYES’S THEOREM

Bayes’s Theorem is a powerful tool for inference.
The theorem itself is motivated by examples of the
following type.

Example 6.3.1: An internet service provider
estimates that two-thirds of all email messages are
spam, and it decides to filter out some of the most
frequent spam varieties by identifying characteristic
keywords.

In particular, some 12600 of 100000 recent spam
messages contained the word “Rolex”. However,
in another 20000 messages that were not spam,
the word “Rolex” appeared 100 times. A message
arrives containing the word “Rolex”. Estimate the
probability that the message is spam.

Modeling. Let E be the event that an arriving
message 18 spam, and let R be the event that the
arriving message contains the word “Rolex”. You
are asked to estimate

pr(E | R)
from the information above.

continued
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6.3.2 Chapter 6 Discrete Probability

Example 6.3.1, continued: By the definition of
conditional probability, we have

pr(ENR)
pr(R)

Neither the numerator nor the denominator occurs
directly in the information we are given,

pr(E|R) =

9
F) ~ —
pr(E) 2
12600
pr(R|F) = = 0.126
100000
_ 120
RIE) ~ — — 0.006
priR|E) = o500

Nonetheless, it is sufficient to calculate them both:
pr(ENR) = pr(RNE) (1)
= pr(R | E)pr(E)
2
~ 0.126 - 3 = 0.084

pr(R) = pr(RNE)+pr(RNE) (2)
= pr(R| E)pr(E) + pr(R | E)pr(E)
~ 0.126 - ; + 0.006 - 1

3
= 0.084 + 0.002 = 0.086
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Example 6.3.1, continued: In summary, we
have

pr(ENR)  0.084
pr(R) ~ 0.086

pr(E | R) = ~ 0.9767

In general, the formula we have used to calculate
pr(E | R) is called Bayes’s Theorem.

Bayes’s Theorem.

pr(R| E)pr(E)
pr(R | E)pr(E) + pr(R | E)pr(E)

priE|R) =

Pf: The formulas for the numerator and denomi-
nator are derived in Example 6.3.1. &

In Example 6.3.1, we could have estimated
pr(E | R)

directly by partitioning a sample of messages con-
taining the word “Rolex” into spam and non-spam.
In various other circumstances, direct measurement
may be impossible.
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6.4 EXPECTED VALUE AND VARIANCE

DEF: The expected value of a random variable X
on a discrete probability space (S, p) is the sum

E(X) =3 X(s)p(s)

seS

Example 6.4.1: The expected outcome of a fair

die 1s
11—|—2 1—|—3 1—|—41—|—5 1—|—61
6 6 6 6 6 6
217
6 2

Example 6.4.2: The expected outcome of the
standard loaded die is

11+22+ +66_91_13
21 21 21 21 3

Over a non-uniform probability space the
expected value of a random variable is the
weighted mean.
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Example 6.4.3: Flip a fair coin three times. The
expected number of heads is

0144_3+2 3+31 _ 12 _ 7
8 8 8 8 8 2

This calculation is based on the binomial
distribution.

Example 6.4.4: Flip a standard loaded coin
three times. The expected number of heads is

o Lo 12 a8 o6t

125 125 125 125
O 0+124964+192 300 12
- 125 T 125 5

This calculation too is based on the binomial
distribution.
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SUMMING RANDOM VARIABLES

Theorem 6.4.1. Let X; and X5 be random vari-
ables on a probability space (S,p). Then

E(X1+ X3) = E(Xy)+ E(Xy)
Pf:

E(X1+Xo) = ) (X1(s) + Xa(s))p(s)
seS

— ZX1(3>29(3> + Xo(s)p(s)

seS

= ) Xi(s)p(s) + > Xa(s)p(s)

seS seS
= FE(X1) + E(X,)

Example 6.4.5: When two fair dice are rolled,
here are both calculations:

T 7
E<X1>—|—E<X2> = §—|—§ = 7 and
6
1 252
E(Xi+Xy) = — E E Y = — =7
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Theorem 6.4.2. Let X4, ..., X,, be random
variables on a probability space (S,p). Then

B(X, 4+ +X,) = B(X))+ -+ E(X,)

Pf: By induction on n, using Thm 6.4.1. &

Example 6.4.6: When 100 fair coins are tossed,
the expected number of heads is

1
—-100 = 50
2

Example 6.4.7: When 100 standard loaded coins
are tossed, the expected number of heads is

0.8-100 = 80
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GEOMETRIC DISTRIBUTION

DEF: The geometric distribution on the positive
Integers 1s
pr(k) = (1-p)"'p

Example 6.4.8: A coin with p(H) = p is tossed
until the first occurrence of heads. Then the prob-
ability of requiring exactly k tosses is (1 — p)*~1p.
We observe that

d (1=-p)tp =pY 1-p*!

k=1 k=1
:waf—m -
It is proved in the text that
B(X) = 3.(1-p)"ph
k=1
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INDEPENDENT RANDOM VARIABLES

DEF: The random variables X and Y on the prob-
ability space (S, p) are independent if for all real
numbers r; and 79

p(X=riAY =ry) = p(X =7r1) p(Y =ry)

Example 6.4.9: Suppose that X is the sum of
two fair dice and that Y is the product. Then

1 1
p( ) T p( ) T
However,
(X =2AY =5) = 0 # L 1
P2 = -2 = 36 18

Thus X and Y are not independent.
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VARIANCE and STANDARD DEVIATION

DEF: The variance of a random variable X on a
probability space (S, p) is the sum

seU

DEF: The standard deviation of a random
variable X on a probability space (U, p) is

Example 6.4.10: Flip a fair coin three times.
The variance of the number of heads is

(0-3) 5+(1-5) 5+ (2-3) 5+(3-3) 3
& & 2 & 2 &
_ 91 13 13 91 24 3
T 4 8 ' 4 84 8 48 32 4
The standard deviation is
3 V3
4 2
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Example 6.4.11: Flip a standard loaded coin
three times. The variance of the number of heads

1S
12\2 1 12\2 12
-2 e (-2
5 125 5 125

_|_<2 12)2 48 n (3 12)2 64
5 125 5 125

144 +49-12+4-48 +9 - 64 1500 12

55 T 55 T 95

The standard deviation is

12 2v/3

25 5

CHEBYSHEV INEQUALITY

Chebyshev Inequality. Let X be a random vari-
able on any probability space that has a mean and
a variance. Then

pr(1X(s) = B(X)| = ko(X)) < —
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