Section 4.0 4.0.1

14:30  10/6/2009

Chapter 4

Induction and Recursion

4.1 Mathematical Induction
4.2 Strong Induction
4.3 Recursive Definitions

4.4 Recursive Algorithms

coursenotes by Prof. J. L. Gross for Rosen 6th Edition



Section 4.1 Mathematical Induction 411

4.1 MATHEMATICAL INDUCTION

From modus ponens:

P basis assertion
P —q conditional assertion
q conclusion

we can easily derive “double modus ponens”:

Do basis assertion
Po — P1 conditional assertion
P1 — P2 conditional assertion

D2 conclusion

We might also derive triple modus ponens,
quadruple modus ponens, and so on. Thus, we
have no trouble proving assertions about arbitrar-
ily large integers. For instance,

The initial domino falls.
If any of the first 999 dominoes falls,
then so does its successor.

Therefore, the first 1000 dominoes all fall down.
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41.2 Chapter 4 Induction and Recursion

The induction axiom for the integers may be char-
acterized as

THE GREAT LEAP TO INFINITY

Given a countably infinite row of dominoes,
suppose that:

(1) The initial domino falls.

(2) If domino n, then so domino n + 1.

Conclusion: All the dominoes all fall down.

basis induction hypothesis

% and (Vn) W

0 n  n+1
imply

D
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Example 4.1.1: a proof by induction
Calculate the sum of the first £ odd numbers:

1+3+5+ -+ (2k—-1)

Practical Method for General Problem Solving.
Special Case: Deriving a Formula

Step 1. Calculate the result for some small cases.
Step 2. Guess a formula to match all those cases.
Step 3. Verity your guess in the general case.

Step 1. examine small cases
(empty sum) = 0

1 =1
143 = 4
1+34+5 =9

1+434+54+7 = 16
Step 2. It sure looks like 14+ 3+ ... + (2k — 1) = k2.
Step 3. Try to prove this assertion by induction.

(VE) | (25 —1) =k

| j=1

(see next page for proof)
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k
Basis Step. Z 2§ —1) = k*| when k=0

| j=1

Ind Hyp. Z(Qj —1) = k*| whenk=n

j=1

Ind Step. Consider the case k =n + 1.

n+1 n
> 2i—1) =) (2j-1)+[2n+1)-1]
:zn:(Qj—l)—l—Qn—l—l

=n? 4 2n + 1 by ind. hyp.
= (n + 1)? by factoring ¢

Why is induction important to CS majors?

It is the method used to prove that a loop or a re-
cursively defined function correctly calculates the
intended result. (just for a start)
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Example 4.1.2: another proof by induction
Calculate the sum of the first £ numbers:

1+24+3+ - +k

Step 1. examine small cases

0-1

(empty sum) = 0 = 5
1-2

] = 1 = ——
2

149 =3 = 23
T2

3-4

4.5

k(k+1)

k
Step 2. Infer pattern: Zj =
j=1

2

Step 3. Use induction proof to verity pattern.

See next page.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition



4.1.6 Chapter 4 Induction and Recursion

k
.. - k(k+1)
P d.1. = :
roposition 4.1.1 Z] 5
71=1
- k(k + 1) 0-1
Basis Step. ;] = 5 = 5 when
k=0.
k
E(k+1
Ind Hyp. Zj = ( 2+ >Vvhenkzn.
71=1
Ind. Step.
n+1 n
2.0 = 20+ (n+D)
j=1 7=1
1
— n(n2—|— ) + (n+1) by ind hyp
1 2 1
- n(n2—|— ) + (n2—|— ) by arithmetic
1)+ 2 1
- nin + >—2|_ (n+1) by arithmetic
2 1
— (n+ )2(n+ ) distrib in numerator
1 2
— (n + )2(n+ ) commutativity &
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NONALGEBRAIC APPLICATIONS of INDUCTION

Consider tiling a 2*-by-2* chessboard.
(k = 3 in the figure below)

with L-shaped tiles, so that one corner-square is
left uncovered.

Basis Step. You can do this when k = 0.
Ind Hyp. Assume you can do this for k = n.
Ind. Step. Prove you can do it for k = n+1.
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4.2 ALTERNATIVE INDUCTION

In a proof by induction, verifying the inductive
premise means you show that the antecedent of
the quantified statement implies the conclusion.

DEF: In a proof by mathematical induction, the
inductive hypothesis is the antecedent of the
inductive premise.

Standard O0-based inductive rule of inference:

0esS basis premise
(Vn)[n>0AneS =n+1€S] ind prem

(Vn)[n >0 = n € 5] conclusion
Alternative Form 1. Using an integer other than
zero as a basis.

be S basis premise
(Vn)[n>bAnesS =n+1€S] ind prem

(Vn)[n>b = n €S| conclusion
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Example 4.2.1: using 5 as the basis
n® >2n+1 forall n>5

Basis Step. 52 > 2-54+1
Ind Hyp. Assume k* > 2k +1 for k > 5.

Ind. Step.
(k+1)> = k*4+2k+1 by arithmetic
(2k+1)+2k+1 Dby ind hyp

4k + 2 by arithmetic
2(k+1) 4+ 2k by arithmetic
2(k+1)4+10 since k> 5

2(k+1)4+1 since 10 > 1 O

V

AVARAY,
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Example 4.2.2: 2" > n? for all n > 5.
Basis Step. 2° > 52
Ind Hyp. Assume 2* > k2 for k > 5

Ind. Step.
2Tl = 2.2F  arithmetic
— 2F + 2%  arithmetic
> k*+k* ind. hyp.
> k*+ (2k+1) by Example 4.2.1

(k4 1)*  arithmetic

4.2.3

%

Example 4.2.3: Prove that any postage of 8¢ or
more can be created from nothing but 3¢ and 5¢

stamps.

Basis Step. 8 = 1-3¢+1-5¢

Ind Hyp. Assume n¢ possible from 3’s and 5’s.

Ind. Step. Try to make (n + 1)¢ postage.
Suppose that n = 7 -3¢ + s - 5¢

Casel: s> 1. Thenn+1 = ...

Case 2: s =0. Thenn+1 = ...
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424 Chapter 4 Induction and Recursion

Alternative Form 2. Inductive hypothesis is that
the first n dominoes all fall down.

be S basis premise
(Vn:n>b)[(VE<n)lkeS]=n+1€S] indp
(Vn:n>0b)[n € S] conclusion

Example 4.2.4: Prove that every integer n > 0
is the product of finitely many primes.

Basis Step. 1 is the empty product.

Ind Hyp. Assume that 1,...,n are each a product
of finitely many primes.

Ind Step.

(1) Either n + 1 is prime, or 3b,¢ € Z such that
n+ 1 = be. (law of excl middle, def of prime)

(2) But b and ¢ are the products of finitely many
primes. (by Ind Hyp)

(3) Thus, so is be. O
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Mind-Benders re Induction

1. 2/3 ancestry

2. All solid billiard balls are the same color.

3. Everyone is essentially bald.
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4.3 RECURSIVE DEFINITIONS

Functions can be defined recursively. The simplest
form of recursive definition of a function f on the
natural numbers specifies a basis rule

(B) the value f(0)
and a recursion rule
(R) how to obtain f(n) from f(n —1), Vn >1

Example 4.3.1: n-factorial n!
(B) 0l =1
(R) m+1)!'=Mn+1) n!

However, recursive definitions often take somewhat
more general forms.

Example 4.3.2: mergesort (A[l...2"]: real)
ifn=20

return(A)
otherwise

return(merge (m’sort(1st half), m’sort(2nd half)))
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Since a sequence is a special kind of function, some
sequences can be specified recursively.

Example 4.3.3: Hanoi sequence 0,1,3,7,15,...
ho = 0
h, = 2h,—1+1 for n>1

Example 4.3.4: Fiboseq 1,1,2,3,5,8,13,...
fo =1
i =1
fn = fa-1+ frno2 for n>2

Example 4.3.5: partial sums of sequences

n { a it n=20
E a; = —1 :
j n . W
= > i—o @4j *+ an otherwise

Example 4.3.6: Catalan seq 1,1,2,5,14,42,...
Co — 1

Cn, = CoCp—1+CiCn—o+ -4+ cp_1co forn>1
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RECURSIVE DEFINITION of SETS

DEF: A recursive definition of a set S comprises
the following:

(B) a basis clause,
which specifies a set of primitive elements;

(R) a recursive clause

which specifies how elements of the set may be
constructed from elements already known to be

in set .S5; there may be several recursive subclauses;

(E) an implicit exclusion clause,

which provides that anything not in the set as a
result of the basis clause or the recursive clause is
not in set S.

Backus Normal Form (BNF) is an example of a
context-free grammar that is used to give recursive
definitions of sets. In W3261, you will learn that
context-free languages are recognizable by push-
down automata.
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Example 4.3.7: a rec. def. set of integers
(B) 7,10 € S
(R)if re Sthenr+7,r+10€ S

This reminds us of the postage stamp problem.
Claim (Vn > 54)[n € S]
Basis: 54 = 2-7+4-10
Ind Hyp: Assumen = r- -7+ s-10 with n > 54.
Ind Step: Two cases.

Case 1: r > 7.
Thenn+1 = (r—"7) -7+ (s+5)-10.

Case 2: r <7 = r-7<42 = s> 2.
Thenn+1 = (r+3)-7 + (s —2)-10.

In computer science, we often use recursive
definitions of sets of strings.
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RECURSIVE DEFINITION of STRINGS

NOTATION: The set of all strings in the alphabet X
is generally denoted X*.

Example 4.3.8: {0,1}* denotes the set of all
binary strings.

DEF: string in an alphabet Y
(B) (empty string) A is a string;
(R) If s is a string and b € X, then sb is a string.

Example 4.3.9: BNF for strings
(string) ::= A | (string)(character)

< :
L( character 3—}

Fig 4.3.1 Railroad Normal Form for strings.
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RECURSIVE DEFINITION of IDENTIFIERS

DEF: An identifier is either
(B) a letter, or
(R) an identifier followed by a digit or a letter.

(This definition of identifier is close to true for
some early programming languages.)

Example 4.3.10: BNF for identifiers

lowercase_letter) = a |b]|-- ]|z

uppercase_letter) = A|B|---|Z

digit) == O |1]---|9
identifier) ::= (letter) | (identifier){letter)
| (identifier){digit)

<
<
(letter) ::= (lowercase_letter) | (uppercase_letter)
<
<

Fig 4.3.2 Railroad Form for identifiers.
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ARITHMETIC EXPRESSIONS

DEF: arithmetic expressions
(B) A numeral is an arithmetic expression.

(R) If e; and ey are arithmetic expressions, then so
are all of the following:
e1 +es e —es eqkes
61/62 €1 * *€9 <€1>

Example 4.3.11: Backus Normal Form

(expression) ::= (numeral)
(expression) + (expression)
expression) — (expression )

)
)
expression) * (expression)
)
)

expression) * *(expression)

<
<
(expression) /(expression)
<
(

(expression))
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SUBCLASSES of STRINGS

Example 4.3.12: binary strings of even length
(B) A e S
(R) If b € S, then 000, 01,510,511 € S.

Example 4.3.13: binary strings of even length
that start with 1

(B) 10,11 € S
(R) If b € S, then b00,0601,010,011 € S.

DEF: A strict palindrome is a character string
that is identical to its reverse.

NB. In natural language palidromes, punctuation
and blanks are ignored, as is the distinction be-
tween upper and lower case letters.

Example 4.3.14: Able was I ere I saw Elba.

Example 4.3.15: A palindromic couplet.
Madam, I'm Adam.
Eve.

Example 4.3.16: set of binary palindromes
(B) A\,0,1€ S
(R) If x € S then 0x0,1xz1 € S.
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LOGICAL PROPOSITIONS

DEF: propositional forms
(B) p,q,r,s,t,u,v,w are propositional forms
(R) If x and y are propositional forms, then so are
my TNy xVy
r—y x—vy (x)
Propositional forms under basis clause (B) are
called atomic.

Remark: Recursive definition of a set facilitates
induction proofs of properties of its elements.

Proposition 4.3.1. Every proposition has an
even number of parentheses.

Pf: by induction on the length of the
derivation of a proposition.

Basis Step. Every atomic propositions has evenly
many parentheses.

Ind Step. Assume that propositions z and y have
evenly many parentheses. Then so do propositions

X TNy xTVy &

r—y r—vy (x)
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CIRCULAR DEFINITIONS

DEF: A would-be recursive definition is circular if
the sequence of iterated applications it generates
fails to terminate in applications to elements of the
basis set.

Example 4.3.17: a circular definition from
Index and Glossary of Knuth, Vol 1.

Circular definition, 260
see Definition, circular

Definition, circular,
see Circular definition
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4.4 RECURSIVE ALGORITHMS

REVIEW : An algorithm is a computational rep-
resentation of a function.

Remark: Although it is often easier to write a
correct recursive algorithm for a function,
iterative implementations typically run faster,
because they avoid calling the stack.

RECURSIVELY DEFINED ARITHMETIC

Example 4.4.1: recursive addition of natural
numbers: succ = successor, pred = predecessor.

Algo 4.4.1: recursive addition

recursive function: sum(m,n)
Input: integers m > 0,n > 0
Output: m +n

If n =0 then return (m)
else return (sum(succ(m),pred(n)))
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Example 4.4.2: iterative addition of natural
numbers

Algo 4.4.2: iterative addition

function: sum(m,n)
Input: integers m > 0,n > 0
Output: m +n

While n > 0 do
m := succ(m);
n := pred(n);
endwhile

Return (m)
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Example 4.4.3: proper subtraction of natural

numbers: succ = successor, pred = predecessor.

Algo 4.4.3: proper subtraction

recursive function: diff(m,n)
Input: integers 0 < n < m
Output: m —n
If n =0 then return (m)
else return (diff (pred(m), pred(n)))

Example 4.4.4: natural multiplication:

Algo 4.4.4: natural multiplication

recursive function: prod(m,n)
Input: integers 0 < n < m
Output: m X n

If n =0 then return (0)

else return (prod(m, pred(n)) +m)
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Example 4.4.5: {factorial function:

Algo 4.4.5: factorial

recursive function: factorial(n)
Input: integer n > 0

Output: n!

If n =0 then return (1)

else return (prod(n, factorial(n — 1)))

NOTATION: Hereafter, we mostly use
infix notations ;: + — % !
to mean the functions

sum, diff, prod, and factorial
respectively.
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RECURSIVELY DEFINED RELATIONS

DEF: The (Iverson) truth function true

assigns to an assertion the boolean value TRUE
if true and FALSE otherwise.

Example 4.4.6: order relation:

Algo 4.4.6: order relation

recursive function: ge(m,n)
Input: integers m,n > 0
Output: true (m > n)

If n =0 then return (TRUE)

elseif m = 0 then return (FALSE)
else return (ge(m — 1,n — 1))

Time-Complexity: ©(min(m,n)).
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OTHER RECURSIVELY DEFINED FUNCTIONS

REVIEW EUCLIDEAN ALGORITHM:

Algo 4.4.7: Euclidean algorithm

recursive function: gcd(m,n)
Input: integers m > 0,n > 0
Output: ged (m,n)

If n =0 then return (m)

else return (ged(n, m mod n))

Time-Complexity: O(lnn).
Example 4.4.7: Iterative calc of ged (289, 255)

mq = 289 ny = 259 r = 34
mo — 259 No = 34 To = 17
m3:34 n3:17 7“320
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DEF: The execution of a function exhibits
exponential recursive descent if a call at one
level can generate multiple calls at the next level.

Example 4.4.8: Fibonacci function
Jo =1 i =1
fn = fa—1+ fan—aforn >2
=11 2 3 5 8 13
21 34 55 89 144

Algo 4.4.8: Fibonacci function

iterative speedup function: fibo(n)
Input: integer n > 0
Output: fibo (n)

If n =0V n=1 then return (1)
else fn—2 ‘= ]-;fn—l = 1;
for j ;=2 ton step 1
fn L= fn—l + fn—2;
fn—2 L= fn—l;
fn_1 := fn; endfor

return ( fn)

1 mn
Time-Complexity: @<< T \/5> >

2
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RECURSIVE STRING OPERATIONS

Y = set; c € X(object); s € X*(string)

¥ = A = {)\} strings of length 0

Y o= 2" %Y strings of length n

»t = 2luX¥?uU-... all finite non-empty strings
= YustuX?u- .- all finite strings

These three primitive string functions are all
defined and implemented nonrecursively for arbi-
trary sequences, not just strings of characters.

DEF: appending a character to a string
append : X* x ¥ — X* non-recursive

(a1a - an,c) — ajas---apc

DEF: first character of a non-empty string
first : ¥ — ¥ non-recursive

aijas a4, r— ai

DEF: trailer of a non-empty string
trailer : ¥ — ¥n—1

a1a2...an —> a2...an
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These four secondary string functions are all
defined and implemented recursively.

DEF: length of a string YX* — N

length(s) = 0 if s = A
CHEMIS) = 11 4+ length(trailer(s)) if s # A

DEF: concatenate two strings X* x X* — Y

(s0t) = S itt= A\
° | append(s,first(t)) o trailer(¢) if t # A

NOTATION: It is customary to overload the
concatenation operator o so that it also appends.

DEF: reversing a string X% — X*

1 |s if s =\
® 7 ) trailer(s) ! o first(s) if s # A

DEF: last character of string 2\ YT — X
last(s) = first(s™')
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RECURSIVE ARRAY OPERATIONS

Algo 4.4.9: location

recursive function: location(z, A| ])
Input: target value z, sorted array A[ |
Output: 0if x ¢ A; min{j |x = A[j]} ifx € A
If length (A) =1 then

return (true (z = A[l]))
elseif z < midval(A)

return location (x, fronthalf(A))
else

return location(x, backhalf(A))

function: midindex(A)

Input: array Al ]

Output: middle location of array A
midindex(A) = |length(A)/2]

function: midval(A)

Input: array Al ]

Output: value at middle location of array A
midval(A) = A[midindex(A)]

continued on next page
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Algo 4.4.9: location, continuation

function: fronthalf(A)
Input: array Al ]

Output: front half-array of array A
fronthalf(A) = A[l... midindex(A)]

function: backhalf(A)

Input: array Al ]

Output: back half-array of array A

fronthalf(A) = A[midindex(A) + 1...length(A)]

Time-Complexity: ©(logn).

Algo 4.4.10: verify ascending order

recursive function: ascending(A] |)
Input: array Al ]
Output: TRUE if ascending; FALSE if not

if length (A[]) <1 then
return (TRUFE)
else
return (a; < as A ascending(trailer(A[ ])))

Time-Complexity: ©(n).
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Algo 4.4.11: merge sequences

recursive function: merge(s,t)
Input: ascending sequences s, t
Output: merged ascending sequence

If length (s) =0 then

return ¢
elseif 51 < ¢4

return (first(s) o merge(trailer(s), t))
else

return (first(¢) o merge(s, trailer(t)))

Algo 4.4.12: mergesort

recursive function: msort(A)
Input: array Al ]
Output: ascending array

If length (A[]) <1 then
return (A] |)

else
return

(merge (msort (fronthalf(A), msort (backhalf(A)))
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