Section 3.0 3.0.1

21:17 9/21/2009

Chapter 3

Algorithms and Integers

3.1 Algorithms

3.2 Growth of Functions

3.3 Complexity of Algorithms

3.4 The Integers and Division

3.5 Primes and GCD’s

3.6 Integers and Algorithms

3.7 Applications of Number Theory

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.1 Algorithms 3.1.1

3.1 ALGORITHMS

DEF: An algorithm is a finite set of precise
instructions for performing a computation or for
solving a problem.

Example 3.1.1: A computer program is an algo-
rithm.

Remark: From a mathematical perspective, an
algorithm represents a function. The British math-
ematician Alan Turing proved that some functions
cannot be represented by an algorithm.

CLASSROOM PERSPECTIVE

Every computable function can be represented
by many different algorithms. Naive algorithms are
almost never optimal.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.1.2 Chapter 3 Algorithms and Integers

TERMINOLOGY: A good pseudocoding of an
algorithm provides a clear prose representation of
the algorithm and also is transformable into one or
more target programming languages.

Algo 3.1.1: Find Maximum

Input: unsorted array of integers a1, as, ..., a,
Output: largest integer in array

{Initialize} max = a;

For ::=2ton
If max < a; then mazx := a;
Continue with next iteration of for-loop.

Return (maz)

Remark: For a sorted array, there would be a
much faster algorithm to find the maximum. In
general, the representation of the data profoundly
affects both the choice of an algorithm and the exe-
cution time.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.1 Algorithms 3.1.3

Algo 3.1.2: Unsorted Sequential Search

Input: unsorted array of integers aq,as, ..., a,
target value x

Output: subscript of entry equal to target value,
or 0 if not found

{Initialize} i := 1
While 1 < n and x # q;
=1+ 1
Continue with next iteration of while-loop.

If : < n then loc :=1 else loc :=0
Return (loc)

Remark: If the array were presorted into
ascending (or descending) order, then faster
algorithms could be used.

(1) linear search could stop sooner
(2) 2-level search could avoid many comparisons

(3) binary search could divide-and-conquer

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.1.4 Chapter 3 Algorithms and Integers

Algo 3.1.3: Sorted Sequential Search

Input: sorted array of integers a1, as, ..., a,
target value x

Output: subscript of entry equal to target value,
or 0 if not found

{Initialize} i := 1
While : <n and z < qg;
=1+ 1
Continue with next iteration of while-loop.

If (1 <n cand = = a;) then loc := i else loc := 0
Return (loc)

DEF: The logical expression conditional-and

booleanl cand boolean?2

is like conjunction, except that boolean2 is not
evaluated if booleanl is false.

Example 3.1.2: In Algorithm 3.1.3, if 7+ > n then
variable a; does not exist. Since the conditional-
and does not evaluate such an a;, problems are
avoided.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.1 Algorithms 3.1.5

Algo 3.1.4: Two-level Search

Input: sorted array of integers a1, as, ..., a,
target value x

Output: subscript of entry equal to target value,
or 0 if not found

{Initialize} i := 10
{Find target sublist of 10 entries}
While : <n and z < qg;
1 =1+ 10
Continue with next iteration of while-loop.

{Linear search target sublist of 10 entries}
{Initialize} j :=1—9
While j < and z < a;

g:=7+1

Continue with next iteration of while-loop.
If (j <n cand z = a;) then loc := j else loc :=0
Return (loc)

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.1.6 Chapter 3 Algorithms and Integers

Algo 3.1.5: Binary Search

Input: sorted array of integers a1, as, ..., a,
target value x
Output: subscript of entry equal to target value,
or 0 if not found

{Initialize} left := 1;right :=n

While left < right
mid := | (left + right)/2]
If x > a0 then left := mud else right := mid
Continue with next iteration of while-loop.

If © = aj.5+ then loc := left else loc := 0
Return (loc)

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.2 Growth of Functions 3.2.1

3.2 GROWTH OF FUNCTIONS

DEF: Let f and g be functions R — R. Then
f is asymptotically dominated by g if

(K € R) (Vo > K) [f(z) < g(2)]

NOTATION: f < g.

Remark: This means that there is a location
x = K on the x-axis, after which the graph of the
function g lies above the graph of the function f.

BIG OH CLASSES

DEF: Let f and g be functions R — R. Then
f is in the class O(g) (“big-oh of g") if

(3C e R)[f = Cy]
NOTATION: f € O(g).

DISAMBIGUATION: Properly understood, O(g) is
the class of all functions that are asymptotically
dominated by any multiple of g.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.2.2 Chapter 3 Algorithms and Integers

TERMINOLOGY NOTE: The idiomatic phrase
“f is big-oh of g”

makes sense if one imagines either
that the word “in” precedes the word “big-oh”,
or that “big-oh of ¢” is an adjective.

Example 3.2.1: 4n? + 21n + 100 € O(n?)
Pf: First suppose that n > 0. Then

4n? + 21n + 100 < 4n° + 24n + 100
< 4(n* + 6n + 25)

< 8n? which holds whenever

n? > 6n + 25, which holds whenever
n? —6n +9 > 34, which holds whenever
n—3> \/3_4, which holds whenever n > 9.
Thus,
(Vn > 9)[4n? + 21n + 100 < 8n?] &
Remark: We notice that n? itself is asymptoti-
cally dominated by 4n* + 21n + 100. However,

we proved that 4n? + 21n + 100 is asymptotically
dominated by 8n?, a multiple of n?.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.2 Growth of Functions 3.2.3

WITNESSES

This operational definition of membership in
a big-oh class makes the definition of asymptotic
dominance explicit.

DEF: Let f and g be functions R — R. Then
f is in the class O(g) (“big-oh of g") if

(3C e R) (3K € R) (Vz > K) [f(z) < Cyg(z)]

DEF: In the definition above, the multiplier C' and
the location K on the z-axis after which Cg(x)
dominates f(x) are called the witnesses to the
relationship f € O(g).

Example 3.2.1, continued: The values
C=8 and K=9
are witnesses to the relationship

4n? + 21n + 100 € O(n?)

Larger values of C' and K could also serve as
witnesses. However, a value of C' less than or equal
to 4 could not be a witness.

CLASSROOM EXERCISE

If one chooses the witness C' = 5, then K = 30
could be a co-witness, but KX = 9 could not.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.24 Chapter 3 Algorithms and Integers

Lemma 3.2.1. (x +1)" € O(z").

Pf: Let C be the largest coefficient in the (bino-

mial) expansion of (x + 1)", which has n + 1 terms.
Then

(x4+1)" < C(n+1)z" &

Example 3.2.2: The proof of Lemma 3.2.1 uses
the witnesses

C = <L§J> and K =0

Theorem 3.2.2. Let p(x) be any polynomial of
degree n. Then p(x) € O(z").

Pf: Apply the method of Lemma 3.2.1. &

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.2 Growth of Functions 3.2.5

Example 3.2.3: 100n°> € O(e™). Observing that
n = e™"” inspires what follows.

Pf: Taking the upper Riemann sum with unit-

sized intervals for Inx = fln %"’3 implies for n > 1
thet In(n) < l—|—1—|—~°-|—l
1 2 n

< <1_|_..._|_1>_|_1_|_..._|_l

— o\ 1 5 6 n

< <1_|_..._|_1>_|_1_|_..._|_l

— \1 5 6 6

<54 10

- 6

Therefore, 61lnn < n + 25, and accordingly,

100n° = 100-e°™" < 100"t < 3. ¢"
We have used the witnesses C' = e3? and K =0. <

Example 3.2.4: 2" € O(n!).

Pf:
n times n—1 times
9.9...929.1.9.9...9
<2-1-2-3---n=2n!

We have used the witnesses C =2 and K =0. <

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.2.6 Chapter 3 Algorithms and Integers

BIG-THETA CLASSES

DEF: Let f and g be functions R — R. Then
f is in the class ©(g) (“big-theta of g”)
if f € O(g) and g € O(f).

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.3 Complexity 3.3.1

3.3 COMPLEXITY

DISAMBIGUATION: In the early 1960’s, Chaitin and
Kolmogorov used complexity to mean measures
of complicatedness. However, most theoretical
computer scientists have used it in a jargon sense
that means measures of resource consumption.

DEF: Algorithmic time-complexity measures
estimate the time or the number of computational
steps required to execute an algorithm, given as a
function of the size of the input.

TERMINOLOGY: The resource for a complexity mea-
sure is implicitly time, unless space or something
else is specified.

DEF: A worst-case complexity measure
estimates the time required for the most time-
consuming input of each size.

DEF: An average-case complexity measure
estimates the average time required for input of
each size.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.3.2 Chapter 3 Algorithms and Integers

Example 3.3.1: In searching and sorting,
complexity is commonly measures in terms of the
number of comparisons, since total computation
time is typically a multiple of that.

Algo 3.1.1: Find Maximum

Input: unsorted array of integers a1, as, ..., a,
Output: largest integer in array

{Initialize} max = a;

For ::=2ton
If max < a; then mazx := a;
Continue with next iteration of for-loop.

Return (maz)

Big-Oh:
Always takes n — 1 comparisons.

Time complexity is in O(n).

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.3 Complexity 3.3.3

Example 3.3.2:

Algo 3.1.2: Unsorted Sequential Search

Input: unsorted array of integers aq,as, ..., ay
target value x

Output: subscript of entry equal to target value,
or 0 if not found

{Initialize} i := 1
While 1 < 2 and x # a;
=1+ 1
Continue with next iteration of while-loop.

If : < n then loc :=1 else loc :=0
Return (loc)

Target in or not in Array:

Worst case takes n comparisons.

Average case takes n/2 comparisons.
Target not in Array:

Every case takes n comparisons.
Big-Oh:

Time complexity is in O(n).

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.34 Chapter 3 Algorithms and Integers

Example 3.3.3:

Algo 3.1.3: Sorted Sequential Search

Input: sorted array of integers ai,as, ..., ay
target value x

Output: subscript of entry equal to target value,
or 0 if not found

{Initialize} i := 1
While : <n and z < qg;
=1+ 1
Continue with next iteration of while-loop.

If (1 <n cand = = a;) then loc := i else loc := 0
Return (loc)

Target in or not in Array:
Worst case takes n comparisons.
Average case takes n/2 comparisons.
Big-Oh:

Time complexity is in O(n).

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.3 Complexity 3.3.5

Example 3.3.4:

Algo 3.1.4: Two-level Search

Input: sorted array of integers a1, as, ..., a,
target value x
Output: subscript of entry equal to target value,
or 0 if not found
{Initialize} i := 10
{Find target sublist of 10 entries}
While 7 <2 and z < q;
1 : =14+ 10
Continue with next iteration of while-loop.

{Linear search target sublist of 10 entries}
{Initialize} j :=1—9
While j <:and z < a;

jgi=734+1

Continue with next iteration of while-loop.
If (j <n cand = + a;) then loc := j else loc :=0
Return (loc)

Target in or not in Array:
Worst case takes (n/10) + 10 comparisons.
Big-Oh: Time complexity is in O(n).

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.3.6 Chapter 3 Algorithms and Integers

To optimize the two-level search, minimize
n
— T
x

as in differential calculus.

—n

5 +1 =0 = x = \/ﬁ
x

Target in or not in Array:

Worst case takes 24/n comparisons.
Big-Oh: Time complexity is in O(y/n).

Increasing to k levels further decreases the
execution time to O({/n),
provided that k£ is not too large.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.3 Complexity 3.3.7

Example 3.3.5:

Algo 3.1.5: Binary Search

Input: sorted array of integers ai,as,...,ay
target value x

Output: subscript of entry equal to target value,
or 0 if not found

{Initialize} left := 1;right :=n

While left < right
mid := | (left + right)/2]
If x > a,,;4 then left := mud else right := mid
Continue with next iteration of while-loop.

If © = aj.5+ then loc := left else loc := 0
Return (loc)

Target in or not in Array:
Every case takes Ign comparisons.

Big-Oh: Time complexity is in O(lgn).

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.3.8 Chapter 3 Algorithms and Integers

COMPLEXITY JARGON

DEF: A problem is solvable if it can be solved by
an algorithm.

Example 3.3.6: Alan Turing defined the
halting problem to be that of deciding whether
a computational procedure (e.g., a program) halts
for all possible input. He proved that the halting
problem is unsolvable.

DEF: A problem is in class P if it is solvable by an
algorithm that runs in polynomial time.

DEF: A problem is tractable if it is in class P.

DEF: A problem is in class NP if an algorithm
can decide in polynomial time whether a putative
solution is really a solution.

Example 3.3.7: The problem of deciding
whether a graph is 3-colorable is in class NP. It
is believed not to be in class P.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.4 The Integers and Division 3.4.1

3.4 THE INTEGERS AND DIVISION

In mathematics, specitying an axiomatic model

for a system precedes all discussion of its proper-
ties. The number system serves as a foundation for
many other mathematical systems.

Elementary school students learn algorithms for
the arithmetic operations without ever seeing a
definition of a “number” or of the operations that
these algorithms are modeling.

These coursenotes precede discussion of division by

the construction of the number system
(see Appendix A1 of Rosen, 6th Edition)
and of the usual arithmetic operations.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.4.2 Chapter 3 Algorithms and Integers

AXIOMS for the NATURAL NUMBERS

DEF: The natural numbers are a mathematical
system

(N, 0€N, s:N— N}

with a number zero 0 and a successor operation
s : N — N such that

(1) (#n) [0 = s(n)].
Zero is not the successor of any number.
(2) (Ym,n € N)[m # n = s(m) # s(n)].

Different numbers cannot have the same successor.
(3) Given a subset S C N with 0 € S
if (Vn € S)[s(n)€ S] then S =N

Given a subset S of the natural numbers, suppose
that it contains the number 0, and suppose that
whenever it contains a number, it also contains the
successor of that number. Then S = N.

Remark: Axiom (1) implies that N has at least
one other number, namely, the successor of zero.
Let’s call it one. Using Axioms (1) and (2) to-
gether, we conclude that s(1) € {0,1}. Etc.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

N TN TN
W N =
N N N’

Section 3.4 The Integers and Division 3.4.3

ARITHMETIC OPERATIONS

DEF: The predecessor of a natural number n is a
number m such that s(m) = n.
NOTATION: p(n).

DEF: Addition of natural numbers.

I AL itm=20
PTT Y s(n) + p(m) otherwise

DEF: Ordering of natural numbers.
m=0 or

n > m means { p(n) > p(m)

DEF: Multiplication of natural numbers.

o — 0 itm=20
= n+mn X p(m) otherwise

OPTIONAL:
Define exponentiation.
Define positional representation of numbers.

Verity that the usual base-ten methods for addi-
tion, subtraction, etc. produce correct answers.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.44 Chapter 3 Algorithms and Integers

DIVISION

DEF: Let n and d be integers with d # 0. Then
we say that d divides n if there exists a number ¢
such that n = dq. NOTATION: d\n.

DEF: The integer d is a factor of n or a divisor of
n if d\n.

DEF: A divisor d of n is proper if d # n.

DEF: The number 1 is called a trivial divisor.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.4 The Integers and Division 3.4.5

DIVISION THEOREM

Theorem 3.4.1. Let n and d be positive integers.
Then there are unique nonnegative integers q and
r < d such that n = qgd + r.

TERMINOLOGY: n = dividend, d =divisor,
g = quotient, and r = remainder.

Algo 3.4.1: Division Algorithm

Input: dividend n > 0 and divisor d > 0
Output: quotient ¢ and remainder r: 0 < r < d
q:=0;7r:=n
While n > d

q:=q+1

r.=r—d

Continue with next iteration of while-loop.

Return (quotient: d; remainder: 7)

Time-Complexity: O(n/d).

Remark: Positional representation uses only
O©(logn) digits to represent a number. This facili-
tates a faster algorithm to calculate division.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.4.6 Chapter 3 Algorithms and Integers

Example 3.4.1: divide 7 into 19

n d q
19 7 0
12 7 1
5 7 2

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.4 The Integers and Division 3.4.7

MODULAR ARITHMETIC

DEF: Let n and m > 0 be integers. The residue of
dividing n by m is, if n > 0, the remainder, or oth-
erwise, the smallest nonnegative number obtainable
by adding an integral multiple of m.

DEF: Let n and m > 0 be integers. Then n mod m
is the residue of dividing n by m. This is called the
mod operator.

Prop 3.4.2. Let n and m > 0 be integers. Then
n — (n mod m) is a multiple of m.

19mod7 = 5
Example 3.4.2: 17mod 5 = 2
—17mod 5 = 3

DEF: Let b, ¢, and m > 0 be integers. Then b is
congruent to ¢ modulo m it m divides b — c.
NOTATION: b = ¢ mod m.

Theorem 3.4.3. Let a,b,c,d,m > 0 be integers
such that a =b mod m and ¢ =d mod m. Then

a+c=b+dmodm and ac = bd mod m

Pf: Straightforward. &

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.4.8 Chapter 3 Algorithms and Integers

CAESAR ENCRYPTION

DEF: Monographic substitution is enciphering
based on permutation of an alphabet

T:A— A

Ciphertext is obtained from plaintext by replacing
each occurrence of each letter by its substitute.

letter A B C D E F - X Y Z
sthsst Q WE R T Y - B N M

DEF: A monographic substitution cipher is called
cyclic if the letters of the alphabet are represented
by numbers 0, 1, ..., 25 and there is a number m
such that 7(n) =m +n mod 26.

An ancient Roman parchment is discovered with
the following words:

HW WX EUXWH
What can it possibly mean?

Hint: Julius Caesar encrypted military messages
by cyclic monographic substitution.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.5 Primes and GCD'’s 3.5.1

3.5 PRIMES AND GCD’S

DEF: An integer p > 2 is prime if p has no non-
trivial proper divisors, and composite otherwise.

Algo 3.5.1: Naive Primality Algorithm

Input: positive integer n
Output: smallest nontrivial divisor of n
For d .=2ton

If d\n then exit
Continue with next iteration of for-loop.

Return (d)

Time-Complexity: O(n).

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.5.2 Chapter 3 Algorithms and Integers

Theorem 3.5.1. Let n be a composite number.
Then n has a divisor d such that 1 < d < \/n.

Pf: Straightforward. &

Algo 3.5.2: Less Naive Primality Algorithm

Input: positive integer n
Output: smallest nontrivial divisor of n
For d :=2 to \/n
If d\n then exit
Continue with next iteration of for-loop.

Return (d)

Time-Complexity: O(y/n).

Example 3.5.1: Primality Test 731.

Upper Limit: |/731] = 27, since 729 = 27°.
—(2\731): leaves 3,5,7,9,11,...,25,27 13 cases
~(3,5,7,9,11,13,15\731): however, 17\731
AHA: 731 = 17 x 43.

N.B. To accelerate testing, divide only by primes 2,
3,5, 7,11, 13, 17.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.5 Primes and GCD'’s 3.5.3

MERSENNE PRIMES

Prop 3.5.2. If m,n > 1 then 2™" — 1 is not prime.

Pf: omin=1) 4 ... 49m 41
(times) X 2™ —1
_om(n=1) _ ... _9m _1

2mn —1

Example 3.5.2:

20 —1=2%2_1
= (2> +1)(2°-1)=9-7=63
:22-3_1
= (222 4221 1 1)(22 - 1) =21-3 =63

Mersenne studied the CONVERSE of Prop 3.5.2:

Is 2P — 1 prime when p is prime?

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.54 Chapter 3 Algorithms and Integers

DEF: A Mersenne prime is a prime number of
the form 2P — 1, where p is prime.

Example 3.5.3: primality of 2P — 1 vsa

prime p 2P — 1 Mersenne?
2 22 -1=3 yes (1)
3 22 —1=7 yes (2)
5 2° —1 =31 yes (3)
7 27 —1 =127 yes (4)
11 21 —1=2047=23-89 no
11213 | yes (23)
19937 219937 1 yes (24)
3021377 23021377 _ yes (37)

Fundamental Theorem of Arithmetic

Theorem 3.5.3. Every positive integer can be
written uniquely as the product of nondecreasing
primes.

Pf: §3.5 proves this difficult lemma:
if a prime number p divides a product mn of
integers, then it must divide either m or n. &

Example 3.5.4: 720 = 2%325! is written as a
prime power factorization.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.5 Primes and GCD'’s 3.5.5

GREATEST COMMON DIVISORS

DEF: The greatest common divisor of two inte-
gers m,n, not both zero, is the largest positive in-
teger d that divides both of them.

NOTATION: ged(m, n).

Algo 3.5.3: Naive GCD Algorithm

Input: integers m < n not both zero
Output: ged(m,n)
g: =1
For d :=1tom
If d\m and d\n then g:=d
Continue with next iteration of for-loop.

Return (g)

Time-Complexity: Q(m).

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.5.6 Chapter 3 Algorithms and Integers

Algo 3.5.4: Primepower GCD Algorithm

Input: integers m < n not both zero
Output: ged(m,n)

ai a2

(1) Factor m = p{*p3? -+ - p%" into prime powers.

(2) Factor n = plil pg2 .- p% into prime powers.

min(aq,b min(as,b min(a, b,
(3) g:=p" (a1 1)p2 (a2 2).”pr ()
Return (g)

Time-Complexity:
depends on time needed for factoring

DEF: The least common multiple of two positive
integers m,n is the smallest positive integer d di-
visible by both m and n.

NOTATION: lem(m, n).

Theorem 3.5.4. Let m and n be positive inte-
gers. Then mn = ged(m,n)lem(m,n).

Pf: The Primepower LCM Algorithm uses max
instead of min. &

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.5 Primes and GCD'’s 3.5.7

RELATIVE PRIMALITY

DEF: Two integers m and n, not both zero, are
relatively prime if gcd (m,n) = 1.
NOTATION: m L n.

Proposition 3.5.5. Two numbers are relatively
prime if no prime has positive exponent in both
their prime power factorizations.

Pf: Immediate from the definition above. &

Remark: Proposition 3.5.5 is what motivates the
notation m L n. Envision the integer n expressed
as a tuple in which the kth entry is the exponent
(possibly zero) of the kth prime in the prime power
factorization of n. The dot product of two such
representations is zero iff the numbers represented
are relatively prime. This is analogous to orthogo-
nality of vectors.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.6 Integers and Algorithms 3.6.1

3.6 INTEGERS AND ALGORITHMS

We accelerate evaluation of ged’s, of arithmetic
operations, and of monomials and polynomials.

POSITIONAL REPRESENTATION of INTEGERS

Arithmetic algorithms are much more complicated
for numbers in positional notation than for num-
bers in monadic notation. However, they pay bene-
fits in execution time.

(1) Addition algorithm execution time decreases
from O(n) to O(logn).

(2) Multiplication algorithm execution time de-
creases from O(nm) to O(lognlogm).

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.6.2 Chapter 3 Algorithms and Integers

Theorem 3.6.1. Let b > 1 and n > 0 be integers.
Let k be the maximum integer such that b* < n.
Then there is a unique set of nonnegative integers
ar,ar_1,...,a0 < b such that

n = akb’“ + Cbk_lbk_l + -+ Cblbl + aop

Pf: Apply the division algorithm to n and b to
obtain a quotient and remainder ag. Then apply
the division algorithm to that quotient and b to
obtain a new quotient and remainder a;. Etc. &

NUMBER BASE CONVERSION

The algorithm in the proof of Theorem 3.6.1
provides a method to convert any positive integer
from one base to another.

Example 3.6.1: Convert 121513 to base-7.
n d q r

1215 7 173 4
173 7 24 5
24 7 3 3
3 7T 0 3

Solution: 3354,

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.6 Integers and Algorithms 3.6.3

EVALUATION OF MONOMIALS

Example 3.6.2: Calculate 13", e.g. 13'7.

Usual method: 13 x 13 x 13 x --- x 13
time = O(n).

Better method:
13,13%,13%,13%, 1316 takes ©(logn) steps
13 x 132 x 13!° takes ©(logn) steps

EVALUATION OF POLYNOMIALS

Evaluate f(z) = a,2™ + ap_12" 1 + ...+ a1x + ag

Usual method of evaluation takes ©(n):
n multiplications to calculate n powers of x
n multplications by coefficients
n additions

Horner’s method (due to):
AnpT + Gp—1
(@nT + ap—1)x + an—s etc.

requires only n multiplications and n additions.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.6.4 Chapter 3 Algorithms and Integers

EUCLIDEAN ALGORITHM

Lemma 3.6.2. Let d\m and d\n.
Then d\m —n and d\m + n.

Pt: Suppose that m = dp and n = dg.
Then m—n=d(p—¢q) and m+n=d(p+q). <

Corollary 3.6.3. gcd (m,n) = ged (m —n,n).
Pt: In three steps.

Al. ged (m,n) is a common div of m — n and n,
and ged (m — n,n) is a common div of m and n.

Pt. Both parts by Lemma 3.6.2.

A2. ged (m,n) < ged(m —n,n)
and ged (m —n,n) < ged(m, n).

Pf. Both parts by Al and def of ged (“greatest”).
A3. ged (m,n) = ged (m —n,n).

Pf. Immediate from A2. $ Cor 3.6.3
Cor 3.6.4. gcd (m,n) = ged (n,m mod n).

Pf: The number m mod n is obtained from m by

subtracting a multiple of n. Iteratively
apply Cor 3.6.3. %

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.6 Integers and Algorithms 3.6.5

Algo 3.6.1: Euclidean Algorithm

Input: positive integers m > 0,n > 0
Output: ged (n, m)
If m =0 then return(n)

else return ged (m,n mod m)

Time-Complexity: O(log(min(n,m))).
Much better than Naive GCD algorithm.

Example 3.6.3: FEuclidean Algorithm

ecd (210,111) = ged (111,210 mod 111) =
ecd (111,99) = ged (99,111 mod 99) =
ecd (99,12) = ged (12,99 mod 12) =
ged (12,3) = ged (3,12 mod 3) =
ecd (3,0) = 3

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.6.6 Chapter 3 Algorithms and Integers

Example 3.6.4: FEuclidean Algorithm

ecd (42,26) = ged (26,42 mod 26) =

ecd (26,16) = ged (16,26 mod 16) =

ecd (16,10) = ged (10,16 mod 10) =
gcd (10,6) = ged (6,10 mod 6) =
ged (6,4) = ged (4,6 mod 4) =
ged (4,2) = ged (2,4 mod 2) =
ged (2,0) = 2

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.7 Number Theory 3.7.1

3.7 NUMBER THEORY

EXTENDED EUCLIDEAN ALGORITHM

Given two integers a and b, the extended
Fuclidean algorithm produces numbers s and

t such that sa + tb = ged(a,b). We describe it by
example.

Example 3.7.1: FEuclidean Algorithm

312 = 2-1114+90
111 = 1-90+ 21
90 = 4-21+6
21 = 3-6+3
= 2-3+0 now start back-substitution

3 =21—3-6
= 21-3-[90—4-21] =13-21 — 3-90
= 13-[111—90] —3-90 = 13- 111 — 16 - 90
— 13-111 — 16 - [312 — 2 - 111]
= 45-111 — 16 - 312 = 4995 — 4992 = 3

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

3.7.2 Chapter 3 Algorithms and Integers

EXPONENTIATION MOD a PRIME

Problem: Evaluate ¥ mod p, with p prime.

FACT 1: z* mod n = (2 mod n)* mod n.
Pf: Ifx = ¢n + (x modn), then

k

2* mod n = (¢gn + (z mod n))* mod n

do a binomial expansion
= Bn + (x mod n)* mod n

= (z mod n)* mod n ¢
Example 3.7.2: 12% mod 5 = 1728 mod 5 = 3
12° mod 5 =2° mod 5 =3

FACT 2. Fermat’s Little Theorem

Let p be prime. Then 2?~! = 1 mod p.
Pf: See Exercise 17 of §2.6. &

Example 3.7.3: 2°mod 7=64 mod 7 =1
7* mod 5 = 2401 mod 5 =1

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

Section 3.7 Number Theory 3.7.3

Example 3.7.4: Calculate 162 mod 7.

Using fast monomial evaluation, this looks like lgn
mults and 1 division. Not bad, unless you want the
answer by hand computation.

Pure Algebra to the Rescue

16%Y mod 7 =2*" mod 7 by FACT 1

=2 mod 7 by FACT 2
— 4

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

