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2.1 SETS

DEF: A set is a collection of objects. The objects
are called elements or members of the set.

NOTATION: : ¢ € S

Example 2.1.1:
e 2 {5 —7 m, “algebra”,2,2.718}
e 8¢ {p:pisa prime number}

SOME STANDARD SETS of NUMBERS

N = the set of all non-negative integers
(the “natural numbers”)

Z, = the set of all integers

Z7 = the set of all positive integers

Q = the rationals = {]—?:p,quandq;éO}
q

R = the real numbers

@
I

the complex numbers
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ROSTERS for SETS

DEF: A roster specifies a finite set by enclosing
in braces a list of representations of its elements.
Repetitions and orderings are irrelevant to content.

Example 2.1.2: a roster

{5, -7, 7, “algebra”, 2,2.718}

Example 2.1.3: identical sets
{1,2,3,1,1,3} = {1,2,3} = {3,1,2}

DEF: The empty set is the set { } that has no ele-
ments. NOTATION: ().

Remark: In mathematics, there is only one empty
set. However, a computer programming language
may have a different empty set for every datatype.

Example 2.1.4: The empty set of character
strings is equal to the empty set of lions.

DEF: A singleton set is a set with one element.

Example 2.1.5: {x} is a singleton set.
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SPECIFICATION by PREDICATES

A predicate over a well-defined set can specity any
subcollection within that set. (Warning: This “set-
builder” method can lead to non-sets.)

Example 2.1.6: {x € Z : P(x)} where P(x) is
TRUE if z is prime.

Example 2.1.7: {(z,y) :z,y € RA2* +y* =1}

OTHER WAYS to SPECIFY SETS

(1) By prose. (can also lead to non-sets).
Example 2.1.8: The set of all palindromes.

(2) By operations on other sets.
Examples soon.

(3) By recursive construction.
Examples in §4.3.
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SETS as ELEMENTS of SETS

Object x is not the same as the singleton set {z}.
Moreover, {x} # {{z}}.

Analogy: Iterative pointers to a computer object
creates new objects.

x £+ &r # &&x

Analogy: Iterative enquotation of a character
string creates new objects.

44 Célion” 7 # Célion” # lion

RELATIONS on SETS

DEF: Set X is a subset of set Y if every element of
X i1s also an element of Y. NOTATION: X C Y.

DEF: A subset X of a set Y is proper if Y has at
least one element that is not in X.

DEF: Sets X and Y are equal if each set is a sub-
set of the other. NOTATION: X =Y.

Example 2.1.9:
(1) 0 is a proper subset of every set except itself.

(2) The integers are a subset of the real numbers.
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DISAMBIGUATION: In computer languages, the inte-
gers and the reals are usually distinct datatypes.
Integer-type values are represented differently from
real-type whole numbers.

Remark: Whereas mathematics deals with ob-
jects, computation science deals with their repre-
sentations.

POWER SET

DEF: The power set of a set S is the set of all
subsets of S. NOTATION: 2° or P(S).

Example 2.1.10:

¢ P({CL, b}> — {®7 {CL}, {b}7 {CL, b}}
o P(0)={0}.

o P(P(0)) ={0,{0}}.

Proposition 2.1.1. If set S has n elements, then
the power set P(S) has 2" elements. &
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CARTESIAN PRODUCT

DEF: The cartesian product of sets A and B is
the set

{(a,b) |a € ANbE B}

NOTATION: A X B.

Example 2.1.11: A ={1,2} B ={a,b,c}
Then

Ax B={(1,a),(1,b),(1,¢),(2,a), (2,b), (2,¢)}

Proposition 2.1.2. The cartesian product A x B
is empty iff either A or B is empty. &
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2.2 SET OPERATIONS

Geometric figures were used by John Venn
(1834-1923) to illustrate the effect of various op-
erations on sets called the universal set or the
domain of discourse.

Remark: Not all set operations can be repre-
sented by Venn diagrams.

VENN DIAGRAMS

DEF: In a generic Venn diagram for a subset S of
a fixed universal set U, the universal set is repre-
sented by a rectangular region in the plane and the
set S is represented by a subregion.

Fig 2.2.1 Set S is shaded.

coursenotes by Prof. J. L. Gross for Rosen 6th Edition



2.2.2 Chapter 2 Sets, Fcns, Seqs, Sums

DYADIC SET OPERATIONS

DEF: The union of sets S and 7' is the set contain-
ing every object that is either in S or in 7. NOTA-
TION: SUT.

Fig 2.2.2 Union S UT is shaded.

DEF: The intersection of sets S and T is the set
containing every object that is in both S and 7.
NOTATION: SNT.

Fig 2.2.3 Intersection S N1 is shaded.

DEF: The difference of sets S and 1’ is the set
containing every object that is in S but not in 7.
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NOTATION: S — T

Fig 2.2.4 Difference S — T is shaded.

Example 2.2.1:
S={1,3,5,7,9} T =1{2,3,5,7}. Then
SUT ={1,2,3,5,7,9}.
SNT={3,57}.
S—T ={1,9}.

Example 2.2.2: Cartesian product (which is
dyadic) is not representable by a Venn diagram.
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MONADIC SET OPERATIONS

DEF: The complement of a set S is the set U — 5,
where U is the universal set. NOTATION: S.

Fig 2.2.5 Complement S is shaded.

Example 2.2.3: These monadic operations are
not readily representable by Venn diagrams.

S — {5} (enbracement)
S — P(S) (empowerment)

TERMINOLOGY NOTE: These two (original) names
have excellent mnemonicity. The mildly frivolous
character may deter their widespread adoption.
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SET IDENTITIES

Various set equivalences have earned the hon-
orific appelation identity. Many of them are analo-
gous to the logical equivalences of §1.2.

Example 2.2.4: The Double Negation Law
has the following set-theoretic analogy:

DEF: Double Complementation Law:
5=S5

Example 2.2.5: The tautology p V —p is called
the Law of the Excluded Middle. It converts to
the equivalence

pV-pes T
which has the following set-theoretic analogy:
SuS=U

AVOIDING BOREDOM

Example 2.2.6: Table 1 of §2.2 (de Morgan, as-
sociativity, etc.) is good for self-study, but not for
exhaustive classroom presentation.
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CONFIRMING IDENTITIES with VENN DIAGRAMS

Example 2.2.7: N distributes over U.

AN(BuC)=(ANnB)U(AnC)

-[&

BuC AnNnBuC)

Example 2.2.8: U distributes over N.

Au(BNnC)=(AUB)N(AUC)

D -

BNC AuBnC)
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2.3 FUNCTIONS

DEF: Let A and B be sets. A function f: A — B
(often abbreviated as f) is a rule that assigns to
each element a € A exactly one element f(a) € B,
called the value of the function f at a.

e We also say that f : A — B is a mapping
from domain A to codomain B.

e f(a) is called the image set of the element
a, and the element a is called a preimage of

fla).
e The set {a | f(a) = b} is called the preimage
set of b. NOTATION: f~1(b).

DEF: The set {b € B | (da € A)[f(a) = b]} is called
the image of the function f : A — B.

DEF: The word range is commonly used to mean
the image set.

DEF: A function is called discrete if its domain
and codomain are both finite or countable (indexed

by 7Z).
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Example 2.3.1: Some functions from R to Z.
(1) floor |z| =max{k € Z | k < x} image = 7Z
(2) ceiling |[z] =min{k € Z |k > x} im =7

—1 ifx <O
(3) sign o(x) = { 0 ifx=0
+1 x>0
image(cs) = {—1,0,+1}
Example 2.3.2: Seq of functions from R to RR.
falling powers z%2=x(x—1)---(x —n+1).

, 3\ 31 /—-1\ -3
B=765=210 (=) =2.2.(—)=—"
2 2 2 \ 2 8

Example 2.3.3: Functions in computation.

(1) C compiler maps the set of ASCII strings to
the boolean set.

(2) The halting function maps the set of C pro-
grams to the boolean set, assigns TRUE iff
this program will always halt eventually, no
matter what input is supplied at run time.

Theorem 2.3.1. The halting function cannot be
represented by a C program. ¢ (CS W3261)
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REPRESENTATION of DISCRETE FUNCTIONS

DEF: The n x 2 array representation of a discrete
function is a table with two columns. The left col-
umn contains every element of the domain. The
second entry in each row is the image of the first
entry.

DEF: The (full) digraphic representation of a
discrete function is a diagram with two columns of
dots. The left column contains a dot for every ele-
ment of the domain, and the right entry contains a
dot for every element of the codomain. From each
domain dot an arrow is drawn to the codomain dot
representing its image.

Example 2.3.4: Representing a function.

Kyle O >@ A

student | grade
Kyle A Cartman O / B
Cartman
Kenny O >@ C
Kenny O/
Kyle's Mom oD

Kyle's Mom
Mr. Garrison O >® F

mw O W

Mr. Garrison
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ONE-TO-ONE and ONTO FUNCTIONS

DEF: A function f : A — B is one-to-one if for
every b € B, there is at most one a € A such that

f(a) = 0.

Prop 2.3.2. A discrete function is one-to-one iff
in its digraphic representation, no codomain dot is
at the head of more than one arrow. &

DEF: A function f: A — B is onto if

for every b € B, there is at least one a € A
such that f(a) = b.

Prop 2.3.3. A discrete function is onto iff in its
digraphic representation, every codomain dot is at
the head of at least one arrow. &

Example 2.3.5: The grading function of
Example 2.3.4 is neither one-to-one or onto.
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BIJECTIONS

DEF: A bijection is a function that is one-to-one
and onto.

DEF: Let f : A — B be a bijection. The inverse
function

f1:B—s A

is the rule that assigns to each b € B the unique
element a € A such that f(a) =b.

Example 2.3.6: The function
{1—=0b, 2—¢, 3—a}
is a bijection. Its inverse is the function

{fa—3, b—1, ¢c— 2}

DEF: A permutation is a bijection whose
domain and codomain are the same set.

Example 2.3.7: The function
{1—2,2—3, 3—1}
is a permutation. Its inverse is the permutation

{1—-3, 2—1, 3— 2}
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2.4 SEQUENCES AND SUMS

DEF: A sequence in a set A is a function f from
a subset of the integers (usually {0,1,2,...} or
{1,2,3,...}) to A. The values of a sequence are
also called terms or entries.

NOTATION: The value f(n) is usually denoted a,,.
A sequence is often written

ap, dai, aa,

Example 2.4.1: Two sequences.
1 1 11

]-7_7_7_7”'
n 2 '3 4
b, = (—1)" 1,-1,1,—1,...

Example 2.4.2: Five ubiquitous sequences.

n* 0,1,4,9,16,25,36,49, ...

n®  0,1,8,27,64,125,216,343, ...
2" 1,2,4,8,16,32,64,128, ...

3" 1,3,9,27,81,243,729,2187, . ..
n! 1,1,2,6,24,120, 720, 5040, . ..
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STRINGS

DEF: A set of characters is called an alphabet.

Example 2.4.3: Some common alphabets:
e {0,1} the binary alphabet
e {0,1,2,3,4,5,6,7,8,9} the decimal digits

e {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, F}
the hexadecimal digits

e {A B,C,D,... XY, Z} English uppercase
e ASCII

DEF: A string is a sequence in an alphabet.

NOTATION: Usually a string is written without
commas, so that consecutive characters are jux-
taposed.

Example 2.4.4: If
F0)=M, f(1)=A, f2)=T, and f(3)=H

then write
CCMATH//
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SPECIFYING a RULE

Problem: Given some initial terms
ap,ail, ..., Ak

of a sequence, try to construct a rule that is
consistent with those initial terms.

Approaches: There are two standard kinds of
rule for calculating a generic term a,,.

DEF: A recursion for a,, is a function whose
arguments are earlier terms in the sequence.

DEF: A closed form for a,, is a formula whose
argument is the subscript n.

Example 2.4.5: 1,3,5,7,9,11, ...
recursion: ag =1; a, = a,_1+2forn>1
closed form: a,, =2n +1

The differences between consecutive terms often
suggest a recursion. Finding a recursion is usually
easier than finding a closed formula.

Example 2.4.6: 1,3,7,13,21,31,43,...
recursion: bg =1; b, =b,—1 +2nforn>1

closed form: b, =n?>+n+1
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Sometimes, constructing a closed formula is much
harder than constructing a recursion.

Example 2.4.7: 1,1,2,3,5,8,13,21,34, ...

recursion: cg = 1,¢1 = 1;
Cp = Cp—1 + Cp_o forn >1

1
closed form: ¢,, = — [Gnﬂ — QHH]

V5
1++5 1—-+/5
2

and g = 5

where G =

INFERRING a RULE

The ESSENCE of science is inferring rules from
partial data.

Example 2.4.8: Sit under apple tree.
Infer gravity.

Example 2.4.9: Watch starlight move 0.15 arc-
seconds in total eclipse. Infer relativity.

Example 2.4.10: Observe biological species.
Infer DNA.
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Important life skill: Given a difficult general
problem, start with special cases you can solve.

Example 2.4.11: Find a recursion and a
closed form for the arithmetic progression:

c,c+d,c+2d,c+3d,...
recursion: ag =¢; Qp = Ap_1 +d
closed form: a,, = ¢ + nd.

Q: How would you decide that a given sequence
is an arithmetic progression?

A: Calculate differences betw consec terms.

DEF: The difference sequence for a sequence a,
. / _
is the sequence a,, = a,, — a,—1 for n > 1.

a,: 1 3 5 7 9 11
Example 3.2.5 redux: - 2 2 2 92 9

Analysis: Since a, is constant, the sequence is
specified by this recursion:
ap = 1;a, = an,—1 + 2 forn > 1.

Moreover, it has this closed form:

!/ !/ !/
an:a0+a1+a2+°°°+an

=ay+2+2+---4+2 =1+2n
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If you don’t get a constant sequence on the first
difference, then try reiterating.

Revisit Example 3.2.6: 1,3,7,13,21,31,43, ...

by: 1 3 7 13 21 31 43
B 2 4 6 8 10 12
B2 2 2 2 2

Analysis: Since b!! is constant, we have
bl = 2+ 2n

Therefore,
b, = by +by +b,+ -+,

=b+2) j=1+®+n)=n*+n+1
j=1

Consolation Prize: Without knowing about fi-
nite sums, you can still extend the sequence:

b,: 1 3 7 13 21 31 43 57
b 2 4 6 8 10 12 14
b2 2 2 2 2 2

T
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SUMMATIONS

DEF: Let a,, be a sequence. Then the big-sigma

notation
mn

2.4

j=m

means the sum

am+am+1+am+2+”°+an—1+an

TERMINOLOGY: j is the index of summation
TERMINOLOGY: m is the lower limit
TERMINOLOGY: n is the upper limit

TERMINOLOGY: a; 1s the summand

Theorem 2.4.1. These formulas for summing
falling powers are provable by induction (see §4.1):

Z]—z (n+1)% Z]—z (n+1)=2

1
§ 1 -k — 1 k+1
E: n—l— )2 E J k—|—1<n+ jlam=s
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Example 2.4.12: True Love and Thm 2.4.1

On the j* day ... True Love gave me

13
1 .9 1 2 2
= =) j2 = Z[22+4- + 132
2]-:2 2
1
— 5[2_|_6_|_...-|-78] = 364 slow
1 142

Cor 2.4.2. High-powered look-ahead to formulas
for summing j*:j =0,1,...,n.

> -
j=1
27
j=1

: : 1 1
(2454 = §n+mi+§m+1ﬁ

=

|
]
.
[N
_|_
W
.
Do
_|_
.
[—
SNa—
|
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POTLATCH RULES for CARDINALITY

DEF: nondominating cardinality:

Let A and B be sets. Then |A| < |B| means that
1 one-to-one function f: A — B.

DEF: Set A and B have equal cardinality, and we
write |A| = |B|, if 3 bijection f : A — B, which
obviously implies that |A| < |B| and |B| < |A|.

DEF: strictly dominating cardinality:
Let A and B be sets. Then |A| < |B| means that
4] < [B| and |4] # |B|.

DEF: The cardinality of a set A is
A = n if |Al =|{1,2,...,n}|
0 ifA=10
Such cardinalities are called finite.

DEF: The cardinality of N is w (“omega’”), or al-
ternatively, Ng (“aleph null”).

DEF: A set is countable if it is finite or w.

Remark: N is the smallest infinite cardinality.
The set R has cardinality N; (“aleph one”), which
is larger than Ng, for reasons to be given.
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INFINITE CARDINALITIES

Proposition 2.4.3. There are as many even non-
negative numbers as non-negative numbers.

Pf:  f(2n) = n is a bijection. &

Theorem 2.4.4. There are as many positive inte-
gers as rational fractions.

e a0 Al Sl ol ==
“NIo oA DI DI D=
- Wl Wi Wwlw Wi Wla
- Al A AW BRI DA

clo gals alw gl ol
- olo olds olw ol Ola

+q—1)(p+q—2
pr. f<]3> _ (p+qg-1)p+g >+p o
q 2
2 4-3
Example 2.4.13: f <§> = —+2 = 8
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Thm 2.4.5. (G. Cantor) There are more positive
real numbers than positive integers.

Semi-proof: A putative bijection [0,1] — Z*
would induce a sequence x; such that {x;} = [0, 1].
Suppose we write each real number as an infinite
decimal fraction.

r1 = .8841752032669031 ... — 1
ro = .1415926531424450 ... — 2
r3 = .3202313932614203 ... — 3
x4 = .1679888138381728... — 4
rs = .0452998136712310... — 5

The j*0 digit of z; is underscored. Consider the
number
73988. ..

whose j*' decimal digit differs (by 1 mod 10) from
the j*M digit of x;, which implies that

73988 ... 5 (V7 € Z+)

Accordingly, this putative bijection is not even a
function, since it fails to assign an element of the
codomain ZT to some number of its domain. &
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