# 21:13 9/21/2009 Chapter **2**

# Sets, Fcns, Seqs, Sums

- 2.1 Sets
- 2.2 Set Operations
- **2.3 Functions**
- 2.4 Sequences and Sums

# 2.1 SETS

DEF: A *set* is a collection of objects. The objects are called *elements* or *members* of the set.

NOTATION: :  $x \in S$ 

#### Example 2.1.1:

- $2 \in \{5, -7, \pi, \text{``algebra''}, 2, 2.718\}$
- $8 \notin \{p : p \text{ is a prime number}\}$

# SOME STANDARD SETS of NUMBERS

- $\mathbb{N}$  = the set of all non-negative integers (the "natural numbers")
- $\mathbb{Z}$  = the set of all integers
- $\mathbb{Z}^+$  = the set of all positive integers

$$\mathbb{Q}$$
 = the rationals =  $\left\{\frac{p}{q}: p, q \in \mathbb{Z} \text{ and } q \neq 0\right\}$ 

- $\mathbb{R}$  = the real numbers
- $\mathbb{C}$  = the complex numbers

# **ROSTERS for SETS**

DEF: A **roster** specifies a finite set by enclosing in braces a list of representations of its elements. Repetitions and orderings are irrelevant to content.

Example 2.1.2: a roster

 $\{5, -7, \pi,$ "algebra", 2, 2.718 $\}$ 

Example 2.1.3: identical sets

 $\{1, 2, 3, 1, 1, 3\} = \{1, 2, 3\} = \{3, 1, 2\}$ 

DEF: The *empty set* is the set  $\{ \}$  that has no elements. NOTATION:  $\emptyset$ .

**Remark**: In mathematics, there is only one empty set. However, a computer programming language may have a different empty set for every datatype.

**Example 2.1.4:** The empty set of character strings is equal to the empty set of lions.

DEF: A *singleton set* is a set with one element.

**Example 2.1.5:**  $\{x\}$  is a singleton set.

# **SPECIFICATION by PREDICATES**

A predicate over a well-defined set can specify any subcollection within that set. (Warning: This "setbuilder" method can lead to non-sets.)

**Example 2.1.6:**  $\{x \in \mathcal{Z} : P(x)\}$  where P(x) is TRUE if x is prime.

**Example 2.1.7:**  $\{(x,y): x, y \in \mathcal{R} \land x^2 + y^2 = 1\}$ 

# **OTHER WAYS to SPECIFY SETS**

(1) By prose. (can also lead to non-sets).

**Example 2.1.8:** The set of all palindromes.

(2) By operations on other sets. Examples soon.

(3) By recursive construction. Examples in  $\S4.3$ .

# SETS as ELEMENTS of SETS

Object x is not the same as the singleton set  $\{x\}$ . Moreover,  $\{x\} \neq \{\{x\}\}$ .

**Analogy:** Iterative pointers to a computer object creates new objects.

 $x \neq \&x \neq \&\&x$ 

**Analogy:** Iterative enquotation of a character string creates new objects.

""lion""  $\neq$  "lion"  $\neq$  lion

# **RELATIONS on SETS**

DEF: Set X is a **subset** of set Y if every element of X is also an element of Y. NOTATION:  $X \subseteq Y$ .

DEF: A subset X of a set Y is **proper** if Y has at least one element that is not in X.

DEF: Sets X and Y are **equal** if each set is a subset of the other. NOTATION: X = Y.

#### Example 2.1.9:

(1)  $\emptyset$  is a proper subset of every set except itself.

(2) The integers are a subset of the real numbers.

DISAMBIGUATION: In computer languages, the integers and the reals are usually distinct **datatypes**. Integer-type values are represented differently from real-type whole numbers.

**Remark**: Whereas mathematics deals with objects, computation science deals with their representations.

# **POWER SET**

DEF: The **power set** of a set S is the set of all subsets of S. NOTATION:  $2^S$  or P(S).

Example 2.1.10:

•  $P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}.$ 

• 
$$P(\emptyset) = \{\emptyset\}.$$

• 
$$P(P(\emptyset)) = \{\emptyset, \{\emptyset\}\}.$$

**Proposition 2.1.1.** If set S has n elements, then the power set P(S) has  $2^n$  elements.

#### **CARTESIAN PRODUCT**

DEF: The *cartesian product* of sets A and B is the set

 $\{(a,b) \mid a \in A \land b \in B\}$ 

NOTATION:  $A \times B$ .

**Example 2.1.11:**  $A = \{1, 2\}$   $B = \{a, b, c\}$ Then

 $A\times B=\{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)\}$ 

**Proposition 2.1.2.** The cartesian product  $A \times B$  is empty iff either A or B is empty.

# 2.2 SET OPERATIONS

Geometric figures were used by John Venn (1834-1923) to illustrate the effect of various operations on sets called the **universal set** or the **domain of discourse**.

**Remark**: Not all set operations can be represented by Venn diagrams.

## **VENN DIAGRAMS**

DEF: In a generic **Venn diagram** for a subset S of a fixed universal set U, the universal set is represented by a rectangular region in the plane and the set S is represented by a subregion.



Fig 2.2.1 Set S is shaded.

# **DYADIC SET OPERATIONS**

DEF: The **union** of sets S and T is the set containing every object that is either in S or in T. NOTA-TION:  $S \cup T$ .



Fig 2.2.2 Union  $S \cup T$  is shaded.

DEF: The *intersection* of sets S and T is the set containing every object that is in both S and T. NOTATION:  $S \cap T$ .



Fig 2.2.3 Intersection  $S \cap T$  is shaded.

DEF: The **difference** of sets S and T is the set containing every object that is in S but not in T.

NOTATION: S - T.



**Fig 2.2.4** Difference S - T is shaded.

#### Example 2.2.1:

$$S = \{1, 3, 5, 7, 9\} \quad T = \{2, 3, 5, 7\}.$$
 Then  

$$S \cup T = \{1, 2, 3, 5, 7, 9\}.$$
  

$$S \cap T = \{3, 5, 7\}.$$
  

$$S - T = \{1, 9\}.$$

**Example 2.2.2:** Cartesian product (which is dyadic) is not representable by a Venn diagram.

# **MONADIC SET OPERATIONS**

DEF: The *complement* of a set S is the set U - S, where U is the universal set. NOTATION:  $\overline{S}$ .



Fig 2.2.5 Complement  $\overline{S}$  is shaded.

**Example 2.2.3:** These monadic operations are not readily representable by Venn diagrams.

 $S \rightarrow \{S\}$  (enbracement)

 $S \rightarrow P(S)$  (empowerment)

TERMINOLOGY NOTE: These two (original) names have excellent mnemonicity. The mildly frivolous character may deter their widespread adoption.

# **SET IDENTITIES**

Various set equivalences have earned the honorific appelation identity. Many of them are analogous to the logical equivalences of §1.2.

#### Example 2.2.4: The Double Negation Law

 $\neg \neg p \Leftrightarrow p$ 

has the following set-theoretic analogy:

DEF: Double Complementation Law:

$$\overline{\overline{S}} = S$$

**Example 2.2.5:** The tautology  $p \lor \neg p$  is called the *Law of the Excluded Middle*. It converts to the equivalence

$$p \lor \neg p \Leftrightarrow T$$

which has the following set-theoretic analogy:

$$S \cup \overline{S} = U$$

## **AVOIDING BOREDOM**

**Example 2.2.6:** Table 1 of §2.2 (de Morgan, associativity, etc.) is good for self-study, but not for exhaustive classroom presentation.

#### **CONFIRMING IDENTITIES with VENN DIAGRAMS**

**Example 2.2.7:**  $\cap$  distributes over  $\cup$ .

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 



 $\mathsf{B}\cup\mathsf{C}$ 

 $A \cap (B \cup C)$ 

**Example 2.2.8:**  $\cup$  distributes over  $\cap$ .

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 



# 2.3 FUNCTIONS

DEF: Let A and B be sets. A function  $f : A \to B$ (often abbreviated as f) is a rule that assigns to each element  $a \in A$  exactly one element  $f(a) \in B$ , called the **value of the function** f at a.

- We also say that  $f : A \to B$  is a **mapping** from **domain** A to **codomain** B.
- f(a) is called the *image set of the element* a, and the element a is called a *preimage* of f(a).
- The set  $\{a \mid f(a) = b\}$  is called the **preimage** set of b. NOTATION:  $f^{-1}(b)$ .

DEF: The set  $\{b \in B \mid (\exists a \in A) [f(a) = b]\}$  is called the *image of the function*  $f : A \to B$ .

DEF: The word **range** is commonly used to mean the image set.

DEF: A function is called **discrete** if its domain and codomain are both finite or countable (indexed by  $\mathbb{Z}$ ).

Example 2.3.1: Some functions from  $\mathbb{R}$  to  $\mathbb{Z}$ . (1) floor  $\lfloor x \rfloor = \max\{k \in \mathbb{Z} \mid k \leq x\}$  image  $= \mathbb{Z}$ (2) ceiling  $\lceil x \rceil = \min\{k \in \mathbb{Z} \mid k \geq x\}$  im  $= \mathbb{Z}$ (3) sign  $\sigma(x) = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ +1 & x > 0 \end{cases}$ image $(\sigma) = \{-1, 0, +1\}$ 

**Example 2.3.2:** Seq of functions from  $\mathbb{R}$  to  $\mathbb{R}$ .

falling powers  $x^{\underline{n}} = x(x-1)\cdots(x-n+1).$  $7^{\underline{3}} = 7 \cdot 6 \cdot 5 = 210$   $\left(\frac{3}{2}\right)^{\underline{3}} = \frac{3}{2} \cdot \frac{1}{2} \cdot \left(\frac{-1}{2}\right) = \frac{-3}{8}$ 

**Example 2.3.3:** Functions in computation.

- (1) **C compiler** maps the set of ASCII strings to the boolean set.
- (2) The *halting function* maps the set of C programs to the boolean set, assigns TRUE iff this program will always halt eventually, no matter what input is supplied at run time.

**Theorem 2.3.1.** The halting function cannot be represented by a C program.  $\diamond$  (CS W3261)

## **REPRESENTATION of DISCRETE FUNCTIONS**

DEF: The  $n \times 2$  array representation of a discrete function is a table with two columns. The left column contains every element of the domain. The second entry in each row is the image of the first entry.

DEF: The *(full) digraphic representation* of a discrete function is a diagram with two columns of dots. The left column contains a dot for every element of the domain, and the right entry contains a dot for every element of the codomain. From each domain dot an arrow is drawn to the codomain dot representing its image.

**Example 2.3.4:** Representing a function.



### **ONE-TO-ONE and ONTO FUNCTIONS**

DEF: A function  $f : A \to B$  is **one-to-one** if for every  $b \in B$ , there is at most one  $a \in A$  such that f(a) = b.

**Prop 2.3.2.** A discrete function is one-to-one iff in its digraphic representation, no codomain dot is at the head of more than one arrow. ♦

DEF: A function  $f : A \to B$  is **onto** if

for every  $b \in B$ , there is at least one  $a \in A$ such that f(a) = b.

**Prop 2.3.3.** A discrete function is onto iff in its digraphic representation, every codomain dot is at the head of at least one arrow. ♢

**Example 2.3.5:** The grading function of Example 2.3.4 is neither one-to-one or onto.

## BIJECTIONS

DEF: A **bijection** is a function that is one-to-one and onto.

DEF: Let  $f : A \to B$  be a bijection. The *inverse function* 

 $f^{-1}: B \to A$ 

is the rule that assigns to each  $b \in B$  the unique element  $a \in A$  such that f(a) = b.

**Example 2.3.6:** The function

 $\{1 \mapsto b, \ 2 \mapsto c, \ 3 \mapsto a\}$ 

is a bijection. Its inverse is the function

 $\{a \mapsto 3, b \mapsto 1, c \mapsto 2\}$ 

DEF: A *permutation* is a bijection whose domain and codomain are the same set.

**Example 2.3.7:** The function

 $\{1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 1\}$ 

is a permutation. Its inverse is the permutation

 $\{1 \mapsto 3, 2 \mapsto 1, 3 \mapsto 2\}$ 

# 2.4 SEQUENCES AND SUMS

DEF: A sequence in a set A is a function f from a subset of the integers (usually  $\{0, 1, 2, ...\}$  or  $\{1, 2, 3, ...\}$ ) to A. The values of a sequence are also called **terms** or **entries**.

NOTATION: The value f(n) is usually denoted  $a_n$ . A sequence is often written

 $a_0, a_1, a_2, \ldots$ 

**Example 2.4.1:** Two sequences.

$$a_n = \frac{1}{n}$$
  $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$   
 $b_n = (-1)^n$   $1, -1, 1, -1, \dots$ 

**Example 2.4.2:** Five ubiquitous sequences.

$$\begin{array}{ll}n^2 & 0, 1, 4, 9, 16, 25, 36, 49, \dots \\ n^3 & 0, 1, 8, 27, 64, 125, 216, 343, \dots \\ 2^n & 1, 2, 4, 8, 16, 32, 64, 128, \dots \\ 3^n & 1, 3, 9, 27, 81, 243, 729, 2187, \dots \\ n! & 1, 1, 2, 6, 24, 120, 720, 5040, \dots \end{array}$$

# STRINGS

DEF: A set of characters is called an *alphabet*.

**Example 2.4.3:** Some common alphabets:

- {0,1} the binary alphabet
- $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$  the decimal digits
- $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$ the hexadecimal digits
- $\{A, B, C, D, \dots, X, Y, Z\}$  English uppercase
- ASCII

DEF: A *string* is a sequence in an alphabet.

NOTATION: Usually a string is written without commas, so that consecutive characters are jux-taposed.

#### Example 2.4.4: If

$$f(0) = M, f(1) = A, f(2) = T, \text{ and } f(3) = H$$

then write

"
$$MATH"$$

# **SPECIFYING a RULE**

**Problem:** Given some initial terms

 $a_0, a_1, ..., a_k$ 

of a sequence, try to construct a rule that is consistent with those initial terms.

**Approaches:** There are two standard kinds of rule for calculating a generic term  $a_n$ .

DEF: A **recursion** for  $a_n$  is a function whose arguments are earlier terms in the sequence.

DEF: A **closed form** for  $a_n$  is a formula whose argument is the subscript n.

**Example 2.4.5:** 1, 3, 5, 7, 9, 11, ...

recursion:  $a_0 = 1$ ;  $a_n = a_{n-1} + 2$  for  $n \ge 1$ 

closed form:  $a_n = 2n + 1$ 

The differences between consecutive terms often suggest a recursion. Finding a recursion is usually easier than finding a closed formula.

**Example 2.4.6:** 1, 3, 7, 13, 21, 31, 43, ...

recursion:  $b_0 = 1$ ;  $b_n = b_{n-1} + 2n$  for  $n \ge 1$ closed form:  $b_n = n^2 + n + 1$ 

Sometimes, constructing a closed formula is much harder than constructing a recursion.

Example 2.4.7: 1, 1, 2, 3, 5, 8, 13, 21, 34, ... recursion:  $c_0 = 1, c_1 = 1;$  $c_n = c_{n-1} + c_{n-2}$  for  $n \ge 1$ closed form:  $c_n = \frac{1}{\sqrt{5}} \left[ G^{n+1} - g^{n+1} \right]$ where  $G = \frac{1 + \sqrt{5}}{2}$  and  $g = \frac{1 - \sqrt{5}}{2}$ 

#### **INFERRING a RULE**

The ESSENCE of science is inferring rules from partial data.

**Example 2.4.8:** Sit under apple tree. Infer gravity.

**Example 2.4.9:** Watch starlight move 0.15 arc-seconds in total eclipse. Infer relativity.

**Example 2.4.10:** Observe biological species. Infer DNA.

**Important life skill:** Given a difficult general problem, start with special cases you can solve.

**Example 2.4.11:** Find a recursion and a closed form for the arithmetic progression:

 $c, c+d, c+2d, c+3d, \ldots$ 

recursion:  $a_0 = c;$   $a_n = a_{n-1} + d$ 

closed form:  $a_n = c + nd$ .

**Q:** How would you decide that a given sequence is an arithmetic progression?

A: Calculate differences betw consec terms.

DEF: The **difference sequence** for a sequence  $a_n$  is the sequence  $a'_n = a_n - a_{n-1}$  for  $n \ge 1$ .

**Analysis:** Since  $a'_n$  is constant, the sequence is specified by this recursion:

 $a_0 = 1; a_n = a_{n-1} + 2$  for  $n \ge 1$ .

Moreover, it has this closed form:

$$a_n = a_0 + a'_1 + a'_2 + \dots + a'_n$$
  
=  $a_0 + 2 + 2 + \dots + 2 = 1 + 2n$ 

If you don't get a constant sequence on the first difference, then try reiterating.

**Revisit Example 3.2.6:**  $1, 3, 7, 13, 21, 31, 43, \ldots$ 

| $b_n$ :   | 1 | 3 | 7 | 13 | 21 | 31 | 43 |
|-----------|---|---|---|----|----|----|----|
| $b'_n$ :  | 2 | 4 | 6 | 8  | 10 | 12 |    |
| $b_n''$ : | 2 | 2 | 2 | 2  | 2  |    |    |

**Analysis:** Since  $b''_n$  is constant, we have

$$b'_n = 2 + 2n$$

Therefore,

$$b_n = b_0 + b'_1 + b'_2 + \dots + b'_n$$
  
=  $b_0 + 2\sum_{j=1}^n j = 1 + (n^2 + n) = n^2 + n + 1$ 

**Consolation Prize:** Without knowing about finite sums, you can still extend the sequence:

| $b_n$ :   | 1 | 3 | 7 | 13 | 21 | 31       | 43        | $\underline{57}$ |
|-----------|---|---|---|----|----|----------|-----------|------------------|
| $b'_n$ :  | 2 | 4 | 6 | 8  | 10 | 12       | <u>14</u> |                  |
| $b_n''$ : | 2 | 2 | 2 | 2  | 2  | <u>2</u> |           |                  |

## **SUMMATIONS**

DEF: Let  $a_n$  be a sequence. Then the **big-sigma** notation



means the sum

$$a_m + a_{m+1} + a_{m+2} + \dots + a_{n-1} + a_n$$

TERMINOLOGY: j is the index of summation TERMINOLOGY: m is the lower limit TERMINOLOGY: n is the upper limit TERMINOLOGY:  $a_j$  is the summand

**Theorem 2.4.1.** These formulas for summing falling powers are provable by induction (see  $\S4.1$ ):

$$\sum_{j=1}^{n} j^{\underline{1}} = \frac{1}{2}(n+1)^{\underline{2}} \quad \sum_{j=1}^{n} j^{\underline{2}} = \frac{1}{3}(n+1)^{\underline{3}}$$
$$\sum_{j=1}^{n} j^{\underline{3}} = \frac{1}{4}(n+1)^{\underline{4}} \quad \sum_{j=1}^{n} j^{\underline{k}} = \frac{1}{k+1}(n+1)^{\underline{k+1}}$$

**Example 2.4.12:** True Love and Thm 2.4.1 On the  $j^{th}$  day ... True Love gave me

$$j + (j - 1) + \dots + 1 = \frac{(j + 1)^2}{2}$$
 gifts.

$$= \frac{1}{2} \sum_{j=2}^{13} j^2 = \frac{1}{2} \left[ 2^2 + \dots + 13^2 \right]$$
$$= \frac{1}{2} \left[ 2 + 6 + \dots + 78 \right] = 364 \text{ slow}$$
$$= \frac{1}{2} \cdot \frac{14^3}{3} = 364 \text{ fast}$$

**Cor 2.4.2.** High-powered look-ahead to formulas for summing  $j^k : j = 0, 1, ..., n$ .

$$\sum_{j=1}^{n} j^{2} = \sum_{j=1}^{n} (j^{2} + j^{1}) = \frac{1}{3} (n+1)^{3} + \frac{1}{2} (n+1)^{2}$$
$$\sum_{j=1}^{n} j^{3} = \sum_{j=1}^{n} (j^{3} + 3j^{2} + j^{1}) = \cdots$$

# **POTLATCH RULES for CARDINALITY**

#### DEF: nondominating cardinality:

Let A and B be sets. Then  $|A| \leq |B|$  means that  $\exists$  one-to-one function  $f : A \to B$ .

DEF: Set A and B have **equal cardinality**, and we write |A| = |B|, if  $\exists$  bijection  $f : A \to B$ , which obviously implies that  $|A| \leq |B|$  and  $|B| \leq |A|$ .

DEF: strictly dominating cardinality: Let A and B be sets. Then |A| < |B| means that  $|A| \le |B|$  and  $|A| \ne |B|$ .

DEF: The **cardinality** of a set A is

$$|A| = \begin{cases} n & \text{if } |A| = |\{1, 2, \dots, n\}| \\ 0 & \text{if } A = \emptyset \end{cases}$$

Such cardinalities are called *finite*.

DEF: The *cardinality* of  $\mathbb{N}$  is  $\omega$  ("omega"), or alternatively,  $\aleph_0$  ("aleph null").

DEF: A set is **countable** if it is finite or  $\omega$ .

**Remark**:  $\aleph_0$  is the smallest infinite cardinality. The set  $\mathbb{R}$  has cardinality  $\aleph_1$  ("aleph one"), which is larger than  $\aleph_0$ , for reasons to be given.

#### **INFINITE CARDINALITIES**

**Proposition 2.4.3.** There are as many even non-negative numbers as non-negative numbers.

**Pf:** f(2n) = n is a bijection.

**Theorem 2.4.4.** There are as many positive integers as rational fractions.

| 1 | 1 | 1 | 1 | 1 | 1 |       |
|---|---|---|---|---|---|-------|
| 1 | 2 | 3 | 4 | 5 | 6 | •••   |
| 2 | 2 | 2 | 2 | 2 | 2 |       |
| 1 | 2 | 3 | 4 | 5 | 6 | •••   |
| 3 | 3 | 3 | 3 | 3 | 3 |       |
| 1 | 2 | 3 | 4 | 5 | 6 | •••   |
| 4 | 4 | 4 | 4 | 4 | 4 |       |
| 1 | 2 | 3 | 4 | 5 | 6 | • • • |
| 5 | 5 | 5 | 5 | 5 | 5 |       |
| 1 | 2 | 3 | 4 | 5 | 6 | • • • |
| ł | : | : | : |   | : | +,    |

**Pf:** 
$$f\left(\frac{p}{q}\right) = \frac{(p+q-1)(p+q-2)}{2} + p$$

Example 2.4.13:  $f\left(\frac{2}{3}\right) = \frac{4 \cdot 3}{2} + 2 = 8$ 

coursenotes by Prof. J. L. Gross for Rosen 6th Edition

 $\diamond$ 

**Thm 2.4.5.** (G. Cantor) There are more positive real numbers than positive integers.

**Semi-proof:** A putative bijection  $[0,1] \rightarrow \mathbb{Z}^+$ would induce a sequence  $x_j$  such that  $\{x_j\} = [0,1]$ . Suppose we write each real number as an infinite decimal fraction.

> $x_{1} = .\underline{8}841752032669031... \mapsto 1$   $x_{2} = .1\underline{4}15926531424450... \mapsto 2$   $x_{3} = .32\underline{0}2313932614203... \mapsto 3$   $x_{4} = .167\underline{9}888138381728... \mapsto 4$  $x_{5} = .0452\underline{9}98136712310... \mapsto 5$

The  $j^{\text{th}}$  digit of  $x_j$  is underscored. Consider the number

.73988...

whose  $j^{\text{th}}$  decimal digit differs (by 1 mod 10) from the  $j^{\text{th}}$  digit of  $x_j$ , which implies that

 $.73988\ldots \not \rightarrow j \qquad (\forall j \in \mathbb{Z}+)$ 

Accordingly, this putative bijection is not even a function, since it fails to assign an element of the codomain  $\mathbb{Z}^+$  to some number of its domain.