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Retiming Synchronous Circuitry 1 

Charles E. Leiserson 2 and James B. Saxe 3 

Abstract. This paper describes a circuit transformation called retimin 9 in which registers are added at 
some points in a circuit and removed from others in such a way that the functional behavior of the 
circuit as a whole is preserved. We show that retiming can be used to transform a given synchronous 
circuit into a more efficient circuit under a variety of different cost criteria. We model a circuit as a graph 
in which the vertex set Visa  collection of combinational logic elements and the edge set E is the set of 
interconnections, each of which may pass through zero or more registers. We give an 0(I VI IEI lgl VI) 
algorithm for determining an equivalent retimed circuit with the smallest possible clock period. We 
show that the problem of determining an equivalent retimed circuit with minimum state (total number 
of registers) is polynomial-time solvable. This result yields a polynomial-time optimal solution to the 
problem of pipelining combinational circuitry with minimum register cost. We also give a chacterization 
of optimal retiming based on an efficiently solvable mixed-integer linear-programming problem. 

Key Words. Digital circuitry, Graph theory, Linear programming, Network flow, Optimization, 
Pipelining, Propagation delay, Retiming, Synchronous circuitry, Systolic circuits, Timing analysis. 

1. Introduction. The goal of VLSI design automation is to speed the design of a 
system without sacrificing the quality of implementation. A common means of 
achieving this goal is through the use of optimization tools that improve the quality 
of a quickly designed circuit. In this paper we show how to optimize clocked 
circuits by relocating registers so as to reduce combinational rippling. Unlike 
pipelining, this technique, which we call retiming, does not increase circuit latency. 

In order to illustrate retiming, consider the problem of designing a digital 
correlator. The correlator takes a stream of bits Xo, Xl, X2,... as input and 
compares it with a fixed-length pattern ao, al . . . . .  ak. After receiving each input xi 
(i > k), the correlator produces as output the number of matches 

k 

(1) yi = ~ 6(xi_j,  aj), 
j=O 
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Fig. L Corre]ator 1: a simple circuit made of two kinds of functional elements. Each comparator 5 has a 
propagation delay of 3 esec, and each adder + has a propagation delay of 7 esec. A longest path of 
combinational rippling starts at the register on the connection labeled A, and thus the clock period of 
the circuit is 24 esec. 

where 6 is the comparison function 

{~ if x = y ;  
5(x, y) = otherwise. 

Figure 1 shows a design of a simple correlator for the case when k = 3. 
Correlator 1 consists of two kinds of functional elements, adders and comparators, 
whose I/O characteristics are shown in the figure. The boxes between the 
comparators are registers which act to shift the xi to the right down the length of 
the correlator. On each tick of the global clock, each x~ is compared with a 
character of the pattern, and the adders sum up the number of matches. 

This design, though easy to understand, has poor performance. Between ticks of 
the clock, the partial sums of the matches ripple up the length of the correlator. 
Suppose, for instance, that each adder has a propagation delay of 7 esec, 4 and each 
comparator has a propagation delay of 3 esec. Then the clock period must be at 
least 24 esec--the time for a signal to propagate from the register on the connection 
labeled A through one comparator and three adders. 

A design that gives better performance can be derived by removing the register 
on connection A from Correlator 1 and inserting a new register on connection B, as 
shown in Figure 2. To show that these two correlators are indeed functionally 
equivalent, consider the portion of the circuit surrounded by the dashed box in the 
figure. It communicates with the rest of the circuit only through connections A and 
B. When the register on A is removed, all input signals to this portion of the circuit 
arrive one clock tick earlier, and thus the boxed portion of Correlator 2 performs 
the same sequence of computations as in Correlator 1, but one clock tick earlier. 
Since the output from the boxed portion of Correlator 2 is delayed one clock tick 
by the new register on connection B, the remainder of the circuit sees the same 

4 Recall that one eptosecond (esec) equals one one-zillionth of a second. 
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Fig. 2. Correlator 2: a retimed circuit functionally equivalent to, but more efficient than, Correlator 1. 
The longest path of combinational rippling begins at the register on connection C, and the clock period 
of this circuit is 17 esec. 

behavior as in Correlator 1. We say that the three functional elements in the boxed 
portion of Correlator 2 lead by one clock tick the corresponding functional 
elements in Correlator 1. Alternatively, we say that the three elements in Correlator 
1 lag by one clock tick the corresponding elements in Correlator 2. 

Correlators 1 and 2 are functionally equivalent, but the performance of the 
retimed circuit Correlator 2 is better than that of Correlator 1. The clock period of 
Correlator 2 is 17 esec--the time for a signal to propagate from the register on 
connection C through one comparator  and two adders. Notice that the two designs 
use the same functional elements connected in the same manner and differ only in 
the locations of registers. Correlator 2 has the I/O characteristic specified by (1), 
but it should be apparent that a direct verification requires considerably more 
effort than the verification of Correlator 1. 

Retiming, the technique of inserting and deleting registers in such a way as to 
preserve function, can be used to produce an even faster circuit than Correlator 2. 
Section 4 gives an implementation of the correlator that achieves a clock period of 
13 esec. Remarkably, if the pattern of comparators and adders is extended 
arbitrarily to the right, a clock period of 14 esec can always be achieved by 
retiming. In this paper we exhibit a polynomial-time algorithm for determining a 
retiming of a circuit that minimizes clock period. 

The remainder of this paper is organized as follows. Section 2 presents the graph- 
theoretic model of synchronous circuits used in this paper. In Section 3 we formally 
describe the operation of retiming [14], in which registers are deleted from some 
connections of a circuit and added to others so that the circuit function is 
preserved. Section 4 gives a simple polynomial-time algorithm for minimizing the 
clock period of a circuit. Section 5 gives an asymptotically more efficient algorithm 
to solve the same problem. In Section 6 we show that the problem of finding a 
retiming of a circuit that minimizes clock period can be reduced to an efficiently 
solvable mixed-integer linear-programming problem, thus providing a framework 
for retiming based on mathematical programming. 

Sections 7-9 discuss extensions of these results. Section 7 considers the special 
case where all functional elements have identical propagation delays and shows 
that optimal retimings can be found more efficiently in this case. The section also 
discusses the relationship of this work to systolic computation and shows how to 
improve the performance of many systolic circuits in the literature. While earlier 
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sections are concerned with finding retimings that are optimal in the sense of 
minimizing clock period, Section 8 examines a different optimization criterion, 
namely minimizing the total amount of state (number of registers) in the retimed 
circuit. In particular, we show that the problem of retiming a circuit to minimize its 
state subject to an upper bound on the clock period can be reduced to the linear- 
programming dual of a minimum-cost flow problem, and hence can be solved 
optimally in polynomial time. Section 9 extends our methods to a more general 
circuit model in which individual functional elements may have nonuniform 
propagation delays--e.g., the low-order output bit of an adder may be available 
earlier than the high-order bit. 

In Section 10 we briefly mention further extensions, including the application of 
our algorithms to optimal pipelining of combinational circuitry. 

2. Preliminaries. In this section we define the notations and terminology needed 
in this paper and present our graph-theoretic model of digital circuits. We conclude 
by giving a simple algorithm for determining the minimum feasible clock period of 
a circuit from its graph. 

We can view a circuit abstractly as a network of functional elements and globally 
clocked registers. The registers are assumed to have the following characteristics: 
each has a single input and a single output; all are clocked by the same periodic 
waveform; and at each clock tick, each storage element samples its input and the 
sampled value is made available at the output until the next tick. We also assume 
that changes in the output of one storage element do not interfere with the input to 
another at the same clock tick. An example of such a storage element is an edge- 
triggered, master-slave, D-type flip-flop [21]. 

The functional elements provide the computational power of the circuit. 
Our model is unconcerned with the level of complexity of the the functional 
elements--they might be NAND gates, multiplexors, or ALUs, for example. Each 
functional element has an associated propagation delay. The outputs of a functional 
element at any time are defined as a specified function of its inputs, provided that 
all the inputs have been stable for a time at least equal to the element's propagation 
delay. We make the conservative assumption that when an input to a functional 
element changes, the outputs may behave arbitrarily until they settle to their final 
values. 

To be precise, we model a circuit as a finite, vertex-weighted, edge-weighted, 
directed multigraph G = (V, E, d, w) (henceforth, we simply say "graph" or, more 
frequently, "circuit"). Figure 3 shows the graph of Correlator 1 from Figure 1. The 

V7 u V5 

v I v z v 3 v4 

Fig. 3. The graph model of Correlator 1 from Figure 1. 
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vertices V of the graph model the functional elements of the circuit. Each vertex 
v e V is weighted with its numerical propagat ion delay d(v). The directed edges E of 
the graph model interconnections between functional elements. Each edge e e E 
connects an output of some functional element to an input of some functional 
element and is weighted with a register count w(e). The register count is the number  
of registers along the connection, s Between two vertices, there may be multiple 
edges with different register counts. 

Vertices can be designated to represent interfaces with the external world, and 
each such vertex is given zero propagat ion delay, as is shown for vertex v h in Figure 
3. (We elaborate on this technicality in Section 10.) If the relative times of events at 
multiple external interfaces must be preserved, we treat them as a single interface 
and represent them as a single vertex with multiple incident edges. Otherwise, we 
assume that multiple external interfaces are independent of each other and cannot 
communicate with each other externally. For  most  of our theory, external 
interfaces can be handled as ordinary vertices, and thus our formalism omits them. 

We use the following terminology extensively. To avoid confusion between 
vertex-weight functions such as the propagat ion delay d and edge-weight functions 
such as the register count w, we use the term weight for edge-weight functions only. 
In fact, the only vertex-weight functions we use are the propagat ion delays d(v), and 
in general we refer to the particular edge weights w(e) of a circuit as register counts. 
If  e is an edge in a graph that goes from vertex u to vertex v, we use the notation 
u & v. In the event that the identity of either the head or the tail of an edge is 
unimportant,  we use the symbol?, as in u & ?. 

For  a graph G, we view a path p in G as a sequence of vertices and edges. If a path 
p starts at a vertex u and ends at a vertex v, we use the notation P u --~ v. A simple 
path contains no vertex twice, and therefore the number  of vertices exceeds the 
number  of edges by exactly one. 

We extend the register count function w in a natural way from single edges to 
arbitrary paths. For  any path p Vo -~ /)1 -~ e k - ~  . . . .  ~ v k, we define the path weight as 
the sum of the weights of the edges of the path: 

k - 1  

w(p) = ~ w(ei). 
i = 0  

Similarly, we extend the propagat ion delay function d to simple paths. For  any 
e o  e l  e k -  1 

simple path p = Vo ~ vl ~ . . .  ,vk, we define the path delay as the sum of the 
delays of the vertices of the path: 

k 

d(p) = ~ ct(v,). 
i = 0  

5 If an output  of a functional element fans out to more than one other functional element, the single 
interconnection can be treated, without loss of generality, as several edges, each with an appropriate 
weight. Any optimization can be translated from the model back to a circuit with fanout. Section 8 
examines fanout more closely. 
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In order that a graph G = (V, E, d, w) have well-defined physical meaning as a 
circuit, we place nonnegativity restrictions on the propagation delays d(v) and the 
register counts w(e): 

D1. The propagation delay d(v) is nonnegative for each vertex v ~ V. 

W1. The register count w(e) is a nonneoative integer for each edge e ~ E. 

We also impose the restriction that there be no directed cycles of zero weight: 

W2. In any directed cycle of G, there is some edge with (strictly) positive register 
count. 

We define a synchronous circuit as a circuit that satisfies conditions D1, W1, and 
W2. The reason for including condition W2 is that whenever an edge e between two 
vertices u and v has zero weight, a signal entering vertex u can ripple unhindered 
through vertex u and subsequently through vertex v. If the rippling can feed back 
upon itself, problems of asynchronous latching, oscillation, and race conditions can 
arise. By prohibiting zero-weight cycles, condition W2 prevents these problems 
from occurring, provided that the system clock runs slowly enough to allow the 
outputs of all the functional elements to settle between each two consecutive ticks. 

For any synchronous circuit G, we define the (minimum feasible) clock period 
O(G) as the maximum amount of propagation delay through which any signal 
must ripple between clock ticks. Condition W2 guarantees that the clock period is 
well defined by the equation 

�9 (G) = max{d(p): w(p) -- 0}. 

For the circuit graph in Figure 3 the clock period is 24, which corresponds to the 
sum of the propagation delays along the path v4 ~ v5 ~ v6 ~ vT. 

Determination of the clock period (I)(G) is relatively simple. The algorithm we 
present here is similar to an algorithm that forms a part of a design tool developed 
at American Microsystems, Inc. [17]. 

Algorithm CP (compute the clock period of a circuit). This algorithm computes the 
clock period ~(G) for a synchronous circuit G = (V, E, d, w). 

1. Let Go be the subgraph of G that contains precisely those edges e with register 
count w(e) = O. 

2. By condition W2, G o is acyclic. Perform a topological sort on Go, totally 
ordering its vertices so that if there is an edge from vertex u to vertex v in Go, 
then u precedes v in the total order. 

3. Go through the vertices in the order defined by the topological sort. On 
visiting each vertex v, compute the quantity A(v) as follows: 
a. If there is no incoming edge to v, set A(v) *-- d(v). 
b. Otherwise, set A(v) ~ d(v) + max{A(u): u -~ v and w(e) = 0}. 

4. The clock period ~(G) is maxwv A(v). W 
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The algorithm works because, for each vertex v, the quantity A(v) equals the 
maximum sum d(p) of vertex delays along any zero-weight directed path p in G 
such that ? P-~ v. The running time is O(IE[). 

3. Retiming. Retiming transformations alter the clock period of a circuit by 
inserting and deleting registers, but without otherwise affecting the circuit's 
structure. This section formally defines retiming and proves some simple properties 
of the transformation. 

A retiming can be viewed as an assignment of a lag to each vertex in a circuit, and 
this is how we define it formally. A retiming of a circuit G = (V, E, d, w) is an 
integer-valued vertex-labeling r: V ~ Z. The retiming specifies a transformation of 
the original circuit in which registers are added and removed so as to change the 
graph G into a new graph G, = (V, E, d, w,), where the edge-weighting w, is 
defined for an edge u & v by the equation 

(2) wr(e) = w(e) + r(v) - r(u). 

In the example of Figure 3, the retiming that assigns - 1 to functional elements 
v3, v~, and v5, and assigns 0 to all other vertices, yields the circuit of Figure 2. 

Equation (2), which tells how retiming affects the register counts of edges, 
extends naturally to paths. 

LEMMA 1. Let G = ( V ,  E, d, w) be a synchronous circuit, and let r be a retiming. 
Then for any path u P-~ v in G, we have 

wr(p) = w(p) + r(v) - r(u). 

P R O O F .  

have 
Suppose p is composed of vertices and edges Vo 5X v 1 -%...  ek- ~ Vk" We 

k - 1  

wr(p) = ~ wr(ei) 
i = 0  

k - 1  

Z 
i = 0  

(w(el) + r(vi+ 1) -- r(vi)) 

k - 1  k - 1  

~, w(ei) A- E (r(vi+x) -- r(vi)) 
i = 0  i = 0  

w(p) + r(Vk) -- r(vo) 

because the sum on the right telescopes. [] 

COROLLARY 2. Let  G = (V, E, d, w)  be a synchronous circuit, and let r be a 
retiming on the vertices of  G. Then, for any cycle p in G, we have wr(p) = w(p). 

PROOF. Immediate from Lemma 1. [] 
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A retiming r of a circuit G is legal if the retimed graph G, satisfies conditions W1 
and W2. An arbitrary assignment of lags to the vertices of a circuit G may cause the 
retimed circuit G, to violate condition Wl,  which says that no edge may have a 
negative register count. This condition must be checked explicitly in order to 
ensure that a retiming is legal. Interestingly enough, condition W2 need not also be 
checked because of the following consequence of Corollary 2. 

COROLLARY 3. Let G = (V, E, d, w)  be a synchronous circuit, and let r be a 
retiming on the vertices of G such that G~ satisfies condition W1. Then r is a legal 
retiming. 

PROOF. Since the propagation delays d are unaffected by retiming, condition D1 
is satisfied by graph Gr. Since condition W1 is true by supposition, it remains only 
to show that G, satisfies condition W2. Let p be any cycle in G. We must show that 
p includes at least one edge e such that w,(e) > 0. Since graph G satisfies conditions 
W1 and W2, the register count w(p) of the cycle in G must be positive. But by 
Corollary 2, the register count w~(p) of the cycle in G~ is equal to w(p) and is 
therefore positive. Hence, there must be an edge on the cycle in G, that has positive 
register count. [] 

To conclude this section we comment that it is necessary to prove that when a 
circuit G is retimed to produce a new graph Gr, the new circuit is functionally 
equivalent, as seen by the external world, to the original--provided, of course, that 
Gr satisfies conditions Wl  and W2. Such a proof can be found in [14], which also 
contains a technical definition of the term "equivalent." 

Moreover, we can show that retiming is, in a sense, the most general possible 
method for changing the register counts within a circuit without disturbing the 
circuit's function. Although we do not formally prove it here, we outline the thread 
of reasoning. (For an example of a similar argument used to prove a weaker result, 
see the proof of Theorem 3 in [14].) Without loss of generality, assume that any 
circuit G = (V, E, d, w) under discussion has the following two properties. 

1. Every vertex v s V is connected by a path to some extei'nal interface. 
2. Every vertex v e V has at least one input. (Otherwise, v computes a constant 

function. 6) 

Given the graph of such a circuit, but no knowledge of what functions are 
computed by the functional elements, it is impossible, other than by retiming, to 
alter the register counts on the edges and be assured that the external behavior is 
unchanged. For  any relabeling of the edge weights that is not a retiming, an 
adversary can specify the functional elements in such a way that the new circuit 
behaves differently from the original circuit. We omit the details of this argument. 

6 In the graph (Figure 1) of Correlator 1, for example, we do not use functional elements to input the 
constants a~, but have instead incorporated them into the comparators. 
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4. An Algorithm for Clock Period Minimization. This section presents a poly- 
nomial-time algorithm for retiming a circuit so as to maximize performance. 
Specifically, we solve the following clock-period-minimization problem: Given a 
circuit 9raph G = (V,  E, d, w), f ind a legal retimin9 r of G such that the clock period 
r of the retimed circuit G r is as small as possible. The solution of this problem 
depends on some basic results from combinatorial optimization and graph theory. 
In particular, we rely on the fact that the following linear-programming problem 
can be solved efficiently. 

PROBLEM LP. Let S be a set of m linear inequalities of the form 

(3) x~ - x i <_ aij 

on the unknowns xl, x2, . . .  , Xn, where the aij are given real constants. Determine 
feasible values for the unknowns xl, or determine that no such values exist. 

Constraint systems in which each constraint has the form of inequality (3) arise 
in shortest paths problems and have been studied extensively. Such a system of 
linear inequalities can be satisfied--or determined to be inconsistent--in O(mn) 
time by the Bellman-Ford algorithm [10, p. 74]. 

The algorithm for minimizing the clock period of a circuit is based on an 
alternative characterization of clock period in terms of two quantities which we 
now define: 

(4) 
W(u, v) = min{w(p): u P--% v}, 
D(u, v) = max{d(p): u ~-~ v and w(p) = W(u, v)}. 

The quantity W(u, v) is the minimum number of registers on any path from vertex u 
to vertex v. We call a path u ~ v such that w(p) = W(u, v) a critical path from u to 
v. The quantity D(u, v) is the maximum total propagation delay on any critical path 
from u to v. Both quantities are undefined if there is no path from u to v. Table 1 
shows the values for Correlator 1. 

LEMMA 4. Let G = ( V, E, d, w)  be a synchronous circuit, and let c be any positive 
real number. The following are equivalent: 

4.1. ~(G) < c. 
4.2. For all vertices u and v in V, if D(u, v) > c, then W(u, v) >_ 1. 

PROOF. (4.1 ~ 4 . 2 )  Suppose ~(G) < c, and let u and v be vertices in V such that 
D(u, v) > c. If W(u, v) = 0, then there exists a path p from u to v with propagation 
delay d(p) = D(u, v), which is greater than c, and register count w(p) = W(u, v) = O. 
Contradiction. 

(4.2 =~ 4.1) Suppose 4.2 holds, and let u ~ v be any zero-weight path in G. Then 
we have W(u, v) = w(p) = 0, which implies d(p) <_ D(u, v) <_ c. [] 
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It is not difficult to compute W by solving the all-pairs shortest-paths problem in 
G. Common ways of solving this problem are the Floyd-Warshall method 
[10, p. 86], which runs in O(I VI 3) time, and Johnson's algorithm [7], which runs in 
O(IVI IEI + I VI21glVI) time using the Fibonacci heap data structure due to 
Fredman and Tarjan [2]. The basic operations on weights used by these algo- 
rithms are addition and comparison. The following algorithm shows that with a 
suitably chosen weight function, an all-pairs shortest-paths algorithm can be used 
to compute both W and D. 

Algorithm WD (compute W and D). Given a synchronous circuit G = 
(V, E, d, w), this algorithm computes W(u, v) and D(u, v) for all u, v ~ V such that u 
is connected to v in G. 

1. Weight each edge u _5, ? in E with the ordered pair (w(e), - d(u)). 
2. Using the weighting from step 1, compute the weight of the shortest path joining 

each connected pair of vertices by solving an all-pairs shortest-paths algorithm. 
(In the all-pairs algorithm, add two weights by performing componentwise 
addition. Compare weights using lexicographic ordering.) 

3. For each shortest-path weight (x, y) between two vertices u and v, set W(u, v) ,,-- 
x and O(u, v) ~- d(v) - y. [] 

The reason that W and D are important is that they behave nicely under retiming. 

LEMMA 5. Let G = (V, E, d, w)  be a synchronous circuit, and let W and D be 
defined on G by (4). Let r be a legal retimin9 of G, and let W r and D r be defined 
analogously on G r. Then 

5.1. a path p is a critical path of G r if and only f i t  is a critical path of G, 
5.2. W~(u, v) = W(u, v) + r(v) - r(u) for all connected vertices u, v e V, and 
5.3. Dr(u, v) = D(u, v) for all connected vertices u, v e V. 

PROOF. Condition 5.1 follows from Lemma 1 because retiming changes the 
weights of all paths from u to v by the same amount, and then 5.2 follows 
immediately. Condition 5.3 is a consequence of 5.2 together with the fact that 
retiming does not alter propagation delays. [] 

The next result is a corollary to Lemma 5 which shows that the range of D 
contains the clock periods of all circuits obtainable by retiming G. In Table 1 the 20 
distinct values for D include all possible clock periods for any retiming of 
Correlator 1. 

COROLLARY 6. Let G = (V, E, d, w)  be a synchronous circuit, and let r be a 
retimin9 of G. Then the clock period O(Gr) is equal to D(u, v) for some u, v e V. 

PROOF. By the definition of clock period, the circuit G, contains some zero-weight 
path u2,-~ v such that d(p)= ~(Gr), and thus we have Wr(u, v )=  wr(p)= O. 
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Moreover, no zero-weight path in Gr has greater propagation delay than p, which 
implies Dr(u, v)=d(p). Hence, by Lemma 5 we have O(Gr)=Dr(u, v)=D(u, v). [] 

Lemmas 4 and 5 also allow us to characterize the conditions under which a 
retiming produces a circuit whose clock period is no greater than a given constant. 

THEOREM 7. Let G = (V,  E, d, w)  be a synchronous circuit, let c be an arbitrary 
positive real number, and let r be a function from V to the integers. Then r is a legal 
retiming of G such that O(Gr) < c if and only if 

7.1. r(u) - r(v) < w(e) for every edge u -~ v of G, and 
7.2. r(u) - r(v) < W(u, v) - 1 for all vertices u, v ~ V such that D(u, v) > c. 

PROOF. By Corollary 3, the retiming r is legal if and only if condition 7.1 holds. If 
r is indeed a legal retiming of G, then by Lemma 4 the retimed circuit G, has clock 
period O(Gr) < c precisely under the condition that Wr(u, v) > 1 for all vertices 
u, v ~ V such that Dr(u, v) > c. Since by Lemma 5 we have Wr(u, v) = W(u, v) + 
r(v) - r(u) and Dr(u, v) -- O(u, v), this condition is equivalent to condition 7.2. [] 

Theorem 7 provides the basic tool needed to solve the clock-period-minimiza- 
tion problem. Notice that the constraints on the unknowns r(v) in the theorem are 
linear inequalities involving only differences of unknowns, and thus we have an 
instance of Problem LP. 7 Therefore, using the Bellman-Ford algorithm to test 
whether a retimed circuit exists with clock period less than some constant c takes 
O(I VI 3) time since there can be only O(I VI z) inequalities. 

We now present an algorithm to determine a retiming for a circuit G such that 
the clock period of the retimed circuit is minimized. 

Algorithm OPT1 (clock-period minimization). Given a synchronous circuit G = 
(V, E, d, w), this algorithm determines a retiming r such that O(G,) is as small as 
possible. 

1. Compute W and D using Algorithm WD. 
2. Sort the elements in the range of D. 
3. Binary search among the elements D(u, v) for the minimum achievable clock 

period. To test whether each potential clock period c is feasible, apply the 
Bellman-Ford algorithm to determine whether the conditions in Theorem 7 can 
be satisfied. 

4. For the minimum achievable clock period found in step 3, use the values for the 
r(v) found by the Bellman-Ford algorithm as the optimal retiming. [] 

Algorithm OPT1 runs in O(I Vr 3 lgl V[) time. For  some circuits, we can some- 
times improve the performance of Algorithm OPT1 by using a smaller set of 

7 Actually, we have the integer linear-programming version of the problem because the unknowns r(v) 
are required to be integer. Since the value on the right-hand side of each equation is integer, however, 
the Bellman-Ford algorithm produces an integer optimal solution if one exists. 
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r(vT)=O r(v6) = -I r(Vs)=-2 

r( O ~  

r(vb)=-I r(vz)=-I r(v3)=-2 r(v4)=-2 
Fig. 4. The graph model of an optimal correlator with clock period 13. The circuit is obtained from the 
graph of Correlator 1 in Figure 3 by applying the optimal retiming, determined by Algorithm OPT1. 
For each vertex v, the value r(v) is the lag of v with respect to the corresponding vertex in Correlator 1. 
The retimed weight of an edge u .L, v is given by w,(e) = w(e) + r(v) - r(u). 

inequalities. (An algorithm with a provably better asymptotic performance is given 
in the next section.) The key observation is that we may eliminate any inequality 
r(u) - r(v) < W(u ,  v) - 1 from condition 7.2 if either D(u, v) - d(v) > c or D(u,v) - 
d(u) > c. The intuition behind this optimization is that there is no need to require 
explicitly that a path p have positive weight w,(p)  if we already require some 
subpath of p to have positive weight. 

As an example, Figure 4 shows the circuit graph of Correlator 3, which can be 
obtained from Correlator 1 by applying the Bellman-Ford algorithm to the 
inequalities from Theorem 7 with clock period c = 13. There are 11 inequalities 
(one for each edge) that must be satisfied to ensure a legal retiming--condition 7.1 
in Theorem 7. Of the potential 34 inequalities arising from cases where D(u, v) > 
13--condition 7.2 in the theorem--only  five need be included if we eliminate those 
for which either D(u, v) - d(v) > 13 or D(u, v) - d(u) > 13. Those entries corre- 
sponding to the five relevant inequalities for D are circled in Table 1. 

5. A More Efficient Algorithm for Clock-Period Minimization. In this section we 
describe an asymptotically more efficient algorithm for the clock-period-minimiza- 
tion problem. Specifically, we show that the f eas ib le  c lock-period test  in step 3 of 
Algorithm OPT1, which determines whether there exists a retiming of G with clock 
period at most c, can be performed in O(i V[ JEi) time, a significant improvement 
over O([V] 3) for sparse graphs. This result yields an O([VJ I E[ lgiV[)-time 
algorithm for determining the optimal retiming. 

We begin with the O([ V I [EI)-time algorithm for determining whether a given 
clock period is feasible. 

Algorithm FEAS (feasible c lock-period test). Given a synchronous circuit G = 
(V, E, d, w) and a desired clock period c, this algorithm produces a retiming r of G 
such that G r is a synchronous circuit with clock period ~(Gr) _< c, if such a retiming 
exists. 

1. For  each vertex v ~ V, set r(v) ~ O. 
2. Repeat the following ]V[ - 1 times: 

2.1. Compute graph G, with the existing values for r. 
2.2. Run Algorithm CP on the graph G, to determine A(v) for each vertex v ~ V. 
2.3. For  each v such that A(v) > c, set r(v) *-- r(v) + 1. 
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3. Run Algorithm CP on the circuit G,. If O(Gr) > c, then no feasible retiming 
exists. Otherwise, r is the desired retiming. [] 

PROOF OF CORRECTNESS. 8 Algorithm FEAS works by relaxation. Step 1 specifies 
an initial tentative retiming in which each vertex has zero lag (so that G, = G). 
Each iteration of step 2 is equivalent to one pass of a Bellman-Ford algorithm on 
the constraints in Theorem 7. We assume that the tentative values produced during 
each pass over the constraint set depend only on the tentative values from the 
previous pass. 

After each iteration of step 2, the tentative retiming is guaranteed to be legal. 
Consider an edge u -~ v in Gr. If the retimed weight w,(e) is strictly positive at the 
beginning of the iteration, then it will be nonnegative at the end of the iteration 
because r(u) can increase by at most 1 and r(v) cannot decrease. If w,(e) = 0 at the 
beginning of the iteration and if r(u) is incremented, then r(v) will be incremented as 
well because A(v) >_ A(u) + d(u) >_ A(u) > c in this case. 

It remains to show that step 2 simulates a pass of a Bellman-Ford algorithm on 
the constraints from Theorem 7. Since the tentative retiming is always legal at the 
beginning of an iteration, the constraints 7.1 are already satisfied. Thus, the 
relaxation step in the inner loop of the Bellman-Ford algorithm does not change 
the value of any r(v) for these constraints. 

To see that the effects of the relaxations due to the constraints 7.2 are achieved, 
consider any two vertices u, v ~ V. If we have D(u, v) < c, then no inequality for 
critical paths from u to v occurs in this constraint set. If the retimed critical path 
weight W~(u, v )=  W(u, v ) +  r ( v ) -  r(u) is positive, then the corresponding in- 
equality in the constraint set is already satisfied. Finally, when D(u, v ) >  c and 
W(u, v) = 0, there is some path u ~ v such that w,(p) = W,(u, v) = 0 and d(p) = 
D(u, v). The existence of this path implies that A(v) > d(p) = D(u, v) > c, so that 
r(v) will be given the new value r(v) + 1 = r(u) + W,(u, v) - W(u, v) + 1 = r(u) - 
W(u, v) + 1, precisely achieving the effect of the desired relaxation of the constraint 
r(u) - r(v) < W(u, v) - 1. Conversely, r(v) is incremented only when there exists 
some path x ~ v such that w~(p) = 0 and d(p) = A(v) > c, implying that D(x, v) >_ 
d(p) > c and W~(u, v) = O. [] 

Algorithm FEAS can be used to improve the clock-period-minimization algo- 
rithm OPT1. 

Algorithm OPT2 (clock-period minimization). Given a synchronous circuit G = 
(V, E, d, w}, this algorithm determines a retiming r such that O(Gr) is as small as 
possible. 

Run Algorithm OPT1 using Algorithm FEAS in step 3, rather than the Bellman- 
Ford algorithm, to test whether each potential clock period c is feasible. [] 

Algorithm OPT2 runs in O(I VI IEI lg[ VI) time. 

s A more detailed proof can be found in 1-20]. 



Retiming Synchronous Circuitry 19 

6. A Mathematical-Programming Framework for Retiming. In this section we 
describe another algorithm for clock-period minimization based on a special case 
of mixed-integer linear programming. Specifically, we show that the feasible clock- 
period test can be performed in O(IVI [EI lgl V I) time. Although this bound is not 
an improvement over the O(1VI I El) bound for Algorithm FEAS, the mathemati- 
cal-programming framework in this section provides further insight into retiming. 

The feasible clock-period test can be reduced to the following mixed-integer 
programming problem. 

PROBLEM MILP. Let S be a set of m linear inequalities of the form xj - x i < aij 
on the unknowns xl, x2 . . . . .  x,,  where the alj are given real constants, and let k be 
given. Determine feasible values for the unknowns xi subject to the constraint that 
xi is integer for i = 1, 2 . . . . .  k and real for i = k + 1, k + 2 . . . . .  n, or determine that 
no such values exist. 

Although mixed-integer programming is in general NP-complete (because 
integer programming is [4, p. 245]), this special case can be solved in 
O(mn + k m  lg n) time [15]. The reduction of the feasible clock-period test to 
Problem MILP makes use of the following lemma. 

LEMMA 8. Let G = ( V, E, d, w)  be a synchronous circuit, and let c be a positive real 
number. Then the clock period ~b(G) is less than or equal to c if and only if there exists 
a function s: V ~ [0, c] such that s(v)>_ d(v) jbr  every vertex v and such that 
s(v) >_ s(u) + d(v)for every zero-weight edge u & v. 

PROOF. For  each vertex v, let A(v) be the maximal sum of the combinational 
delays along any zero-weight path that ends at v. (This A is the same as the one in 
Algorithm CP.) By definition, we have ~(G) < c if and only if A(v) < c for all v. If 
we have (I)(G) < c, the function A satisfies the desired properties for s. Conversely, if 
a function s exists that has the desired properties, then we have A(v) < s(v) < c for 
every vertex v. [] 

Lemma 8 and Corollary 3 together give a characterization of when it is possible 
to retime a circuit so that the retimed circuit has a clock period of c or less. 

LEMMA 9. Let G = ( V, E, d, w)  be a synchronous circuit, and let c be a positive real 
number. Then there exists a retiming r of G such that rb(G,) <_ c if and only if there 
exists an assignment of a real value s(v) and an integer value r(v) to each vertex v ~ V 
such that the following conditions are satisfied: 

9.1. - s (v )<_ - d ( v ) f o r  every vertex v e V, 
9.2. s ( v ) < c f o r  every vertex v E V, 
9.3. r(u)-r (v)<_w(e)wherever  u & v ,  and 
9.4. s ( u ) - s ( v ) <  - d ( v )  wherever u & v  such that r ( u ) - r ( v ) =  w(e). 
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PROOF. Condition 9.3 captures the requirements for r to be a legal retiming, as 
given in Corollary 3, namely that r be a mapping from V to Z such that G, satisfies 
condition Wl (no negative-weight edges). Conditions 9.1, 9.2, and 9.4 capture the 
requirement for Gr to have a clock period ~(Gr) < c as given in Lemma 8. (Recall 
that G, is defined to have w,(e) = w(e) + r(v) - r(u) for each edge u e V.) [] 

Unfortunately, this result does not quite allow us to recast an instance of the 
feasible clock-period test as an instance of Problem MILP because of the qualifying 
clause "such that r(u) - r(v) = w(e)" in condition 9.4. The next theorem shows that 
the conditions can be expressed without such a clause. 

THEOREM 10. Let  G = (V, E, d, w )  be a synchronous circuit, and let c be a positive 
real number. Then there is a retiming r o f  G such that tb(G,) < c i f  and only if there 
exists an assignment o f  a real value R(v) and an integer value r(v) to each vertex v ~ V 
such that the following conditions are satisfied: 

10.1. r(v) - R(v) < - d(v)/c for  every vertex v ~ V, 
10.2. R(v) - r(v) < 1 for  every vertex v ~ V, 
10.3. r(u) - r(v) < w(e) wherever u Z~ v, and 
10.4. R(u) - R(v) < w(e) - d(v)/c wherever u -~ v. 

PROOF. Any solution to the conditions in Lemma 9 can be converted to a 
solution to the conditions above by using the same values for the r(v) and taking 
R(v) = r(v) + s(v)/c for each vertex v. Conversely, any solution to the conditions 
above yields a solution to the conditions in Lemma 9 using the substitution 
s(v) = c(R(v) - r(v)). [] 

Theorem 10 is the basis for the following improvement on Algorithm OPT1. 

Algorithm OPT3 (clock-period minimization). Given a synchronous circuit G = 
(V, E, d, w), this algorithm determines a retiming r such that ~(G,) is as small as 
possible. 

Run Algorithm OPT1, but in step 3, test whether each potential clock period c is 
feasible in the following manner. 

3.1. Use Theorem 10 to produce an instance of Problem MILP that has a solution 
if and only if clock period c is feasible. 

3.2. Use the algorithm from [15] to determine whether the instance of Problem 
MILP has a solution. [] 

This algorithm can be made to run in O([Vl IEI lglV] + IV12 lg21V[) time by 
choosing efficient algorithms for each of the steps. If Johnson's all-pairs shortest- 
paths algorithm [-7] using the Fibonacci heap data structure due to Fredman and 
Tarjan [2] is used in Algorithm WD, step 1 runs in O(I VI IEi + IV[ 2 lgl VI) time. 
Since there are only O(I V[ 2) elements in the range of D, step 2 runs in O([ VI 2 lgl V[) 
time. Each iteration of the binary search in step 3 requires solving an instance of 
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Problem MI LP  with I VI integer variables, I VI real variables, and 21VI + 21El = 
O(IEI) inequalities. Thus the total time for step 3 is O(I V] IEI lg[ VI + I vI  z lg2l V[). 
The optimal retiming from step 4 is produced as a side effect of step 3. 

7. Unit Propagation Delay, Systolic Circuits, and Slowdown. This section exam- 
ines circuits in which the propagation delays of all functional elements are equal. 
For  such circuits, the clock-period-minimization problem can be solved more 
simply than for arbitrary circuits. In this section we explore the relation of this class 
of circuits to systolic computation [8], [9], [11], [14]. We observe that many 
systolic circuits in the literature can support several independent, interleaved 
computations. In [14] we introduced a transformation called slowdown which, 
when coupled with retiming, can be used to produce a systolic circuit from an 
arbitrary synchronous circuit. In this section we give an efficient algorithm for 
determining whether any given circuit G can be produced from another circuit 
(called a reduced form of G) by slowdown and retiming. If such a reduced circuit 
exists, then our algorithm finds one. 

We define a circuit G = (V, E, d, w) to be a unit-delay circuit if each vertex v ~ V 
has propagation delay d(v) = 1. The next theorem gives a characterization of when 
a unit-delay circuit has clock period less than or equal to c. The theorem is phrased 
in terms of the graph G - 1/c, which is defined as G - 1/c = ( V ,  E, d, w'} where 
w'(e) = w(e) - 1/c for every edge e e E. Thus G - 1/c is the graph obtained from G 
by subtracting 1/c from the weight of each edge in G. 

THEOREM 11. Let  G = ( V, E, d, w )  be a unit-delay synchronous circuit, and let c be 
any positive integer. Then there is a retiming r o f  G such that O(Gr) < c i f  and only if  
G - 1/c contains no cycles having negative weight. 

PROOF. First, suppose G -  1/c has no negative-weight cycles. We produce a 
retiming r of G such that O(Gr) < c. Assume without loss of generality that there is 
a path from each vertex v of G to some vertex Vo (if not, add edges of the form v ~ v o 
with sufficiently large weight so that no negative-weight cycles are introduced into 
G - i/c), and let g(v) be the weight of the shortest path from v to Vo in G - 1/c. For 
each vertex v, let r(v) = rg(v)-]. 

We now prove that the function r so defined is a legal retiming and that 
O(Gr) < c. First we show legality by showing wr(e) = w(e) + r(v) - r(u) > 0 for 
every edge u-~ v. The shortest path in G - 1/c from u to v o is at least as short 
as the path u-~  v - -~  Vo, where p is the shortest path (in G - 1/c) from v to v 0. 
Thus, we have g(u) < g(v) + w(e) - 1/c. Taking ceilings of both sides gives r(u) < 
rg(v) + w(e) - 1/c7 <_ Fg(v)-] -i- w(e) < r(v) + w(e), and thus wr(e) = w(e) + r(v) - 
r(u) > O, as desired. 

Next, we must show that the clock period of the retimed circuit G, is at most c. 
That is, we must show that w,(p) > 1 for any path u ~ v containing c or more 
edges. The shortest path from u to v o is at least as short as the path u ~-~ v ~ v o, 
where q is the shortest path from v to v o. Furthermore, the total weight along p in 
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G - 1/c is at most w(p) - 1, since there are at least c edges in the path. Thus, we 
have g(u) < g(v) + w(p) - 1, and w,(p) = w(p) + [-g(v)] - [g(u)-] > 1. 

On the other hand, suppose G - 1/c contains some cycle p with negative weight. 
We must prove that G cannot be retimed to have a clock period of c or less. Let n be 
the number of edges in the cycle p. By the definition of G -  I/c, we have 
w ( p ) -  n/c = w'(p), where w' is the edge-weight function for G -  1/c. But by 
supposition, w'(p) is negative, which means that w(p) - n/c < 0, that is, the cycle p 
contains fewer than n/c registers in G. But retiming leaves the number of registers 
on any cycle unchanged (Corollary 2). Thus, no matter how the fewer than n/c 
registers are distributed on the cycle of n vertices, there must be some register-free 
path with at least c edges and, therefore, with at least c + 1 vertices. Consequently, 
G cannot be retimed to have a clock period of c or less. [] 

To test whether there is a retiming r of a unit-delay circuit G such that O(Gr) < c, 
we can use the Bellman-Ford algorithm to find the weight g(v) of the shortest path 
in G - 1/c from each vertex v to an arbitrary vertex Vo. If the shortest-path weights 
are not well defined, the Bellman-Ford algorithm detects a negative-weight cycle, 
which means that no retiming exists. Thus, the feasible clock-period test can be 
performed in O(IVI IEI) time for unit-delay circuits using the Bellman-Ford 
algorithm directly. 

A systolic circuit is a unit-delay circuit in which there is at least one register along 
every interconnection between two functional elements. Thus the clock period 
of a systolic circuit is the minimum possible--the propagation delay through a 
single functional element. Systolic circuits have been studied extensively 
[81 [9], [11], [14], and they have many applications including signal processing, 
matrix manipulation, machine vision, and raster graphics. 

Interpreted in the context of systolic circuits, Theorem 11 is a generalization of 
the Systolic Conversion Theorem from [141 which says that G can be retimed to be 
systolic if the constraint graph G - 1 has no cycles of negative weight. (Simply 
restrict Theorem 11 to the case where c = 1.) The Systolic Conversion Theorem is 
generalized in a different way in [14], however, through the idea of slowdown. 

For any circuit G = (V, E, d, w )  and any positive integer c, the circuit cG is the 
circuit obtained by multiplying all the register counts in G by c. That is, the circuit 
cG is defined as cG = ( V ,  E, d, w')  where w'(e) = cw(e) for every edge e e E. All the 
data flow in cG is slowed down by a factor of c, so that cG performs the same 
computations as G, but takes c times as many clock ticks and communicates with 
the external interfaces only on every cth clock tick. In fact, cG'acts as a set of c 
independent, interleaved instances of G. 

If a circuit G can be obtained by retiming a circuit of the form cG', then we say 
that G is a c-slow circuit, and, more specifically, that G is a c-slow form of  G'. In this 
situation, we say G' is a reduced form of G. The main advantage of a c-slow circuit is 
that it can often be retimed to have a shorter clock period than any of its reduced 
forms. For some applications, throughput is the issue, and multiple, interleaved 
streams of computation can be effectively utilized. A c-slow circuit that is systolic 
offers maximum throughput. 
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The following corollary to Theorem 11 tells when a circuit has a c-slow form 
which is systolic. 

COROLLARY 12. Let G = ( V, E, d, w)  be a unit-delay synchronous circuit, and let c 
be an arbitrary positive integer. Then the following are equivalent: 

12.1 The graph G - 1/c has no negative-weight cycles. 
12.2. The circuit G can be retimed to have clock period less than or equal to c. 
12.3. The circuit cG can be retimed to be systolic. 

PROOF. That 12.1 and 12.2 are equivalent is exactly Theorem 11. The equivalence 
of 12.1 and 12.3 follows by applying Theorem 11 to cG with clock period 1, and 
observing that c G -  1 has a negative-weight cycle if and only if G -  1/c has 
negative-weight cycle. [] 

The registers of a circuit of the form cG are naturally divided into c equivalence 
classes. Given any two registers A and B in cG, the number of registers on any two 
paths from register A to register B are congruent modulo c. Moreover, if we 
consider undirected paths, in which edges can be traversed in the reverse direction, 
and if we generalize the notion of path weight by adding 1 for each register on a 
forward edge and subtracting 1 for each register on a reverse edge, the register 
counts of two undirected paths from register A to register B are also congruent 
modulo c. Consequently, the registers are naturally divided into equivalence classes 
according to their undirected path weight (modulo c) from an arbitrary vertex. 

At any given time step, any two registers in different equivalence classes contain 
data from independent streams of computat ion--data that can never arrive at 
inputs of the same functional element at the same time. Although retiming destroys 
the individual identities of the registers, Lemma 1 guarantees that the registers of 
any c-slow circuit can still be partitioned into c such equivalence classes. 

Using the notion of equivalence classes of registers, the following scenario 
illustrates the relationships given in Corollary 12. Let G = (V, E, d, w) be a 
unit-delay synchronous circuit. Find an integer c such that G -  1/c has no 
negative-weight cycles, and consider the circuit cG. There is a retiming r of cG such 
that (cG)r is systolic. If we remove all the registers in the c-slow circuit (cG)r except 
for those in one equivalence class, the resulting circuit is a retimed form of the 
original circuit G, and its clock period is less than or equal to c. 

Many systolic circuits appearing in the literature are 2-slow or 3-slow--even if 
the ideas of slowdown and retiming were not explicitly used in their design. For 
example, the systolic algorithms for band-matrix multiplication and LU-decompo- 
sition from [9] are 3-slow and can support three independent, interleaved streams 
of computation. If all independent streams of computation cannot be utilized in a 
c-slow circuit, it may be desirable to remove all registers except for those in one 
equivalence class. The following algorithm determines if a circuit is actually a c- 
slow form of another, and if so, produces a reduced form of the circuit. 
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Algorithm R (remove all but one equivalence class of  registers in a circuit). Given a 
synchronous circuit G = (V, E, d, w) this algorithm determines the largest c such 
that G is c-slow and produces a reduced circuit G' such that G is a c-slow form of G'. 

1. For  each vertex v e V, set dist(v) to the weight of some undirected path from v to 
an arbitrary vertex Vo e V. 

2. Compute  c = gcd{w(e) + dist(v) - dist(u): u & v}. 
3. For  each vertex v e V, set r(v) = dist(v) rood c. 
4. Produce G' = (V,  E, d, w'), where w'(e) = (w(e) + r(v) - r(u))/c for each edge 

u-5, v. [] 

PROOF OF CORRECTNESS. We first show that for each edge u -% v, the value w'(e) is 
a legal register count. By construction, c evenly divides w(e) + r(v) - r(u) because c 
divides w(e )+  d i s t ( v ) -  dist(u). 9 Thus, for any edge, the register count w'(e) 
produced in step 4 is guaranteed to be an integer. In addition, w'(e) is guaranteed to 
be strictly greater than - 1 beause r(u) must be less than c and w(e) + r(v) is at least 
0. Since we have just shown that w'(e) is an integer, it must be nonnegative. 

The construction in step 4 directly provides the identity G' = G,/c, and thus G is 
a c-slow form of G'. We show that the c computed in step 2 is the largest possible. 
Suppose there is a c' such that G is a c'-slow form of another circuit G'. We wish to 
show that c' divides w(e) + dist(v) - dist(u) for each edge u Z, v, and thus that c' 
divides c. For  every vertex v, the weights of all undirected paths in c'G' from v to v o 
are congruent modulo c'. Since retiming changes all path weights between two 
vertices by the same amount  (which is provable for undirected paths by generaliz- 
ing Lemma 1), it must be the case that in G, the weights of all undirected paths from 
v to v o are congruent modulo c'. In particular, the weight of the path u --~ Vo that 
determines dist(u) and the weight w(e) + dist(v) of the path u & v - ~  v o must be 
congruent modulo c'. Hence c' divides w(e) + dist(v) - dist(u). [] 

Step 1 of Algorithm R can be performed in time O(I V I + I EI) = O(IEI) by 
depth-first search. Step 3 runs in 0(1V I) time, and step 4 takes O([E[) time. Step 2 
takes more work, but not much more. The computat ion of the greatest common 
divisor (gcd) of [ E[ integers can be performed in O(1 EI + lg x) time, where x is the 
least nonzero absolute value of any of the numbers. Just start with this value 
x - -which  can be found in o ( [g [ )  t ime--as  a tentative gcd, and gcd in each of the 
other numbers in any order. Each mod operation in Euclid's algorithm either uses 
up one of the [EI numbers, or else divides the current tentative gcd by the golden 

ratio (1 + v/5)/2.1~ (As a practical matter,  starting with any of the [EI numbers as 
the initial tentative gcd would give reasonable performance, since the number  of 

9 If w(e) + dist(v) -- dist(u) = 0 for every edge u & v, then in Step 2 we get c = oo. Using the standard 
convention that x mod oo = x and x/oo = 0, Algorithm R yields a reduced graph G' in which each edge 
u & v has weight w'(e) = O. 
ao That is, ifn rood operations are performed to compute a new tentative ged, then it will be smaller than 
the old tentative gcd by at least .a factor of ((1 + ,~)/2)"- 1. 
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registers in a typical circuit is much less than exponential in the number of edges.) 
Thus the total running time of Algorithm R is O(IEI + lg x). 

Observe that Algorithm R works not only for unit-delay circuits, but for any 
synchronous circuit. Furthermore, when the extra equivalence classes of registers 
from a c-slow circuit are removed, the clock period of the reduced circuit is not 
unduly lengthened. The definition of w' in step 4 provides that, for any path p of 
weight w(p) > c in G, we have w'(p) > 0, which implies that O(G') < cOP(G). To 
guarantee the minimum clock period, however, the reduced circuit must generally 
be retimed. 

A systolic circuit that is naturally c-slow can be converted by Algorithm R into a 
circuit that performs an operation on every clock tick and whose clock period is 
bounded by c. This conversion can result in a performance advantage because, in 
practice, there are time penalties associated with the loading of registers. Because of 
this overhead, c clock ticks of a circuit with nominal period 1 typically use more 
time than one clock tick of a circuit with nominal period c. Also, a reduction in 
registers may save chip area, which can lead to further performance improvements 
since the wires will in general be shorter. A possible disadvantage of reducing the 
number of equivalence classes of registers is that throughput is also reduced in 
cases where the independent streams of computation might be effectively utilized. 

8. Register Minimization and Fanout. Thus far we have concentrated on clock 
period as the objective function for determining a retiming. In Section 7, however, 
we showed that the number of registers in a circuit could sometimes be reduced by 
a method other than retiming. This section shows that the problem of retiming a 
circuit to minimize the total state of a circuit is polynomial-time solvable by 
reducing that problem to a minimum-cost flow [10, p. 129] problem. We also show 
that the total state of a circuit can be minimized subject to a bound on the clock 
period. These results can be extended to reflect the widths of the interconnections 
and ways by which fanout is modeled. 

For a given circuit G = (V, E, d, w), the state-minimization problem is to 
determine a retiming r such that the total state S(G,) = Ee~ ~ w,(e) of the retimed 
circuit is minimized. This problem can be solved in polynomial time as the 
following theorem shows. 

THEOREM 13. The state-minimization problem can be reduced to the minimum-cost 
flow problem. 

SKETCH OF PROOF. Let G = (V, E, d, w) be a circuit. We seek a retiming r such 
that the total state S(Gr) = Ee~E wr(e) of the retimed circuit is minimized. By the 
definition of w,, we have 

S(G~) = ~ w~(e) 
e~E 

= ~ (w(e) + r(v) -- r(u)) 
U~.v 

= S(G) + ~ r(v) (indegree(v) - outdegree(v)). 
v ~ V  
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Since S(G) is constant, minimizing St(G) is equivalent to minimizing the quantity 

(5) ~ r(v) (indegree(v) - outdegree(v)), 
v~.g 

which is a linear combination of the r(v) since (indegree(v)--outdegree(v)) is 
constant for each v. The minimization is subject to the constraint that, for each 
edge u & v, the register count w,(e) is nonnegative--that is, 

(6) r(u) - r(v) < w(e). 

We can regard each edge of e e E as a network flow arc having infinite capacity and 
having cost w(e) per unit of flow. The dual of the linear-programming problem 
given by (5) and (6) asks that we assign to each edge e a nonnegative flow f(e) such 
that the net flow out of any vertex v is 

(7) f(e)- ~ f(e)= outdegree(v)- indegree(v), 
v-gO ?-%v 

and such that the total cost 2 e  e E w(e)f(e) is minimized. This problem can be 
expressed directly as a minimum-cost flow problem by augmenting the flow graph 
with a source and a sink, each of which is connected to each vertex by an edge 
whose capacity is determined by (7). The lags r(v) in the minimum-state retiming 
are the dual variables (potentials) for the optimal flow f*(e), which most 
minimum-cost flow algorithms compute. [] 

The dominant cost in solving the state-minimization problem is solving the 
minimum-cost flow problem, for which many algorithms exist I-1], [3], [5], [6], 
[18]. Using the algorithm due to Orlin [18], for example, the state-minimization 
problem can be solved in O(IEI z lg] V[ + I VI IE[ lg a] VI) time. Under the assump- 
tion that the largest number of registers on any single edge in the circuit is at most 
polynomial in IV[, we can use the algorithm due to Goldberg and Tarjan [6] to 
solve the state-minimization problem in O(I V[ IEI lgl VI lg(I vIZ/IEI)) time. 

More complicated problems can be solved within the same framework. For 
example, the total state of a circuit can be minimized subject to a bound on the 
clock period. Given a maximum allowable clock period c, we wish to find a 
retiming r that minimizes the state S(Gr) of the retimed circuit subject to the 
condition that O(G,) < c. In this case, we must minimize the quantity (5) subject to 
the constraints from Theorem 7, which require that r(u) - r(v) < w(e) whenever 
u & v, and that r(u) - r(v) <<_ W(u, v) - 1 whenever D(u, v) > c. The state minimi- 
zation problem remains the dual of a minimum-cost flow problem, but the flow 
graph is augmented with additional edges. 1 

The state-minimization problem can be generalized by allowing registers on 
different edges to have different costs. For example, it may be cheaper to add a 

11 See Section VII.2 of [20], for a more extended discussion of the minimum-cost  flow duals of the 
variants of the state minimization problems discussed in this section. 
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register along a one-bit wide control path than along a 32-bit wide data path. We 
may model such situations by assigning to each edge e a breadth fl(e) proportional 
to the cost of adding a register along e. The objective function which we must 
minimize is then given by 

(8) wv~r(v)(?~fl(e)-~fl(e))'~-~? 

and the constraints on the r(v) are unchanged. This problem is still the dual of a 
minimum-cost flow problem since the quantity in the large parentheses is a 
constant for each v. Although the fl(e) need not be integers, if there is a solution to 
the state-minimization problem, there is an integer optimal solution because the 
linear-programming tableau for the problem is unimodular and the right-hand side 
is an integer vector. 

In a physical circuit, a signal from a register or functional element may fan out to 
several functional elements. As was mentioned in footnote 5 in Section 2, we model 
this situation with several different edges in the circuit graph. For the clock-period- 
minimization problem, there was no harm in modeling fanout in this manner, but 
for the state-minimization problem, there can be. The difficulty that arises in the 
state-minimization problem is that registers can be shared along the physical 
interconnection. The objective functions (5) and (8) do not take sharing into 
account. 

Fanout can be incorporated into the model in several ways that allow the 
sharing of registers to be accounted for exactly. We begin by looking at the 
situation in Figure 5(a) where one vertex u has an output that fans out to two 
vertices v~ and v2. To deal properly with this situation in the state-minimization 
problem, it is sufficient to introduce a dummy vertex ~ with zero propagation delay 
which models the fork of the interconnection, as is shown in Figure 5(b). When the 

(o) 

(b) 

V2 

u u k._j 
V2 

(c) 
r tu}=O r(G) = 

r(v2)=2 

Fig. 5. Modeling two-way fanout with an extra vertex having delay zero. 
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circuit is retimed to minimize the number of registers, either the edge from fi to vl or 
the edge from fi to v2 will have zero register count, and the edge from u to ~ will 
have the shared registers. In Figure 5(c) the edge to v 1 ends up with zero weight 
after retiming so as to minimize the total number of registers. 

Large multiway forks present some modeling alternatives not encountered in the 
two-way case. If a physical interconnection is to be modeled, the fork can be 
decomposed into several two-way forks. (In fact, our concern for modeling the 
physical interconnection prompted us to design Correlator 1 with the x, running 
through the comparators rather than with multiway fanout directly from the 
external interface.) 

For logical design, however, it may be undesirable to model the physical 
interconnection. In the case of a three-way fork, for instance, we might wish to 
share the largest possible number of registers between the two edges with greatest 
register counts, regardless of which two edges these end up being. Modeling a k- 
way fork for k > 3 by decomposing the interconnection into two-way forks will not 
work. 

A solution to this problem of modeling k-way fanout with maximum register 
sharing is depicted in Figure 6. An output of vertex u, having breadth fl, fans out to 

e2 
vl  . . . . .  Vk along edges u Y4 vx, u ~ v2, . . .  , u L~ Vk. In the retimed circuit, the cost of 
this fanout should be fl times the maximum of retimed edge weights w,(e , ) .  So that 
the register count cost function S ( G , )  will properly model the register sharing, we 
first add a dummy vertex fi with zero propagation delay. Letting Wmax = 

e i  ^ 

maxl___i_<k w(ei) ,  we add edges v i ~ u l  with weights w(Ei)  = wm,x - w(ei) .  Finally, 
we give all edges e~ and ei breadths of f l /k.  

The modified circuit graph accurately models the sharing of registers among the 
edges e~ involved in the fanout when the state is minimized. For any retiming r, 

ei ~i . 
Lemma 1 dictates that the weights w, (p i  ) of all paths p / =  u ~ v i ~ ~ will be 
identical since they are identical in the unretimed circuit. The retimed register 
counts wr(e~) are constrained by the rest of the circuit, but the weights wr(~) will be 
as small as possible because ~ is a sink in the graph. Thus the register count of one 

JJllW'%' V' 

/ w(e2) ~ Wmax-w[ez),, 

p/k ~v k /~/k 

Fig. 6. A gadget for modeling the cost of multiway fanout with maximal sharing of registers. 
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of the ~i will be zero, and therefore the weight of each path pi will be 
max1 <_i<_ k wr(ei). Since there are k paths, each with breadth fl/k, the total cost of the 
paths will be fl.maxl <~<_k wr(ei) as desired. 

9. A More General Model for Propagation Delay. In this section we extend the 
methods of Sections 5 and 6 to deal with functional elements in which the 
propagation delays through individual functional elements are nonuniform. In an 
adder, for example, the propagation delay from a low-order input bit to a high- 
order output bit may be far greater than the propagation delay from a low-order 
input bit to a low-order output bit or from a high-order input bit to a high-order 
output bit. Thus, the worst-case propagation delay through two cascaded adders 
can be much less than twice the worst-case propagation delay through a single 
adder. This section gives a more general circuit model to handle this commonly 
occurring situation. We show how the retiming problem in this model can be 
reduced to simple mixed-integer programming as in Section 6. We also give a more 
efficient relaxation algorithm similar to that in Section 5. 

We may take into account nonuniform propagation delays through functional 
elements by modifying the model for synchronous circuits given in Section 2, so 
that from each input to each output of a given functional element, an independent 
propagation delay may be assigned. Figure 7 shows graphically the "insides" of a 
functional element in this model. The vertex v contains internal ed#es drawn from a 
set Fv --- {e: ? -~ v} x {e: v -~ ?}. We denote the set of all internal edges of all 
vertices as F = Uwv Fv. 

We augment our arrow notation as follows. For internal edges fa ~ Fu and 
fb E F~, we use the notation fu -~ fb tO indicate that normal edge e connects internal 
edge fa of U to internal edge fb of V. This means not only that u -~ v, but also that 
there are edges ?L~ u and v ~ ? such that f ,  = (ei, e) and fb = (e, eo). Notice that a 
single edge u-~ v typically connects multiple internal edges of u with multiple 
internal edges of v. 

The propagation delay function d, rather than being a function from V to the 
nonnegative reals, is a function from F to the nonnegative reals. For an internal 
edge f = (el, e2) ~ F~, the value d( f )  denotes the propagation delay through f .  A 
given output of a functional element v need not depend on all the inputs. In an 
adder, for example, the values of the high-order input bits have no effect on the low- 
order bits of the output. 

B 

C 

Fig. 7, A functional element with nonuniform propagation delays. The time at which output X must 
settle is either 4 esec after input A settles or 11 esec after input B settles, whichever is later. 
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We view paths in the extended model  as going from an internal edge, via an 
alternating sequence of  normal  and internal edges, to an internal edge. Fo r  any 
path p = fo ~ f l  ~ " "  ek-j fk, the delay is natural ly defined as d(p)= d(fo) + 
d(f l )  + " .  + d(fk), and the register count  of the path  is defined as w(p)= 
w(eo) + w(el) + ... + W(ek_ 1)" We use the nota t ion  u ~ v to denote that  pa th  p 
goes from some internal edge of vertex u to some internal edge of vertex v. 

The clock period O(G) of  a circuit G = ( F ,  E, d, w)  is the max imum delay along 
any path of  zero weight. We define retiming, which affects w but  not  d, exactly as it 
is defined in the model  of Section 2.12 

The following results show how the clock-period-minimizat ion problem for a 
circuit G under  the extended model  can be reduced to an instance of Prob lem 
M I L P  having one integer variable for each functional element of  G and one real 
variable for each edge of G. The results, which parallel Lemma 8, L e m m a  9, and 
Theorem 10, are presented without  proof. 

LEMMA 14. Let G = ( F ,  E, d, w)  be a synchronous circuit in the extended model, 
and let c be a positive ~'eal number. Then the clock period O( G) is less than or equal to 
c if and only if there exists a function s: E ~ [0, c] such that 

14.1. s(e) >_ d( f )  wherever f -~ ?, and 

14.2. s(eb) > s(ea) § d ( f )  wherever ? ~ f ~ 9. and w(e~) > O. 

LEMMA 15. Let G = (V,  E, d, w)  be a synchronous circuit in the extended model, 
and let c be a positive real number. Then there is a retiming r of G such that ~(Gr) <_ c 
if and only if there exists an assignment of a real value s(e) to each edge e ~ E and an 
integer value r(v) to each vertex v ~ F such that the following conditions are satisfied: 

15.1 - s(e) < - d ( f )  wherever f _L, ?, 
15.2 s(e) < c for every edge e ~ E, 

e 

15.3 r(u) -- r(v) < w(e) wherever u ~ v, and 
15.4. s(ea) - s(eb) <_ - d ( f )  wherever u ~ f ~ ?, r(u) - r(v) = w(ea), and f ~ F~. 

THEOREM 16. Let G = ( F, E, d, w~ be a synchronous circuit in the extended model, 
and let c be a positive real number. Then there is a retiming r of G such that O( Gr ) <_ c 
if and only if there exists an assignment of a real value R(e) to each edge e ~ E and an 
integer value r(v) to each vertex v ~ V such that the following conditions are satisfied: 

16.1. r(v) - g(e) < - d( f ) /c  wherever f -~ ? and f ~ Fv. 
e 

16.2. R(e) - r(v) < 1 wherever v ~ ?, 

12 The possibility that the internal connections between the inputs and outputs of a functional element 
may not be a complete bipartite graph gives rise to some technical differences between the extended 
model and the model of Section 2. First, condition W2 need only be imposed for those cycles in which 
consecutive edges are actually connected by the internal data paths in the vertices. Second, retiming may 
not be the only way to adjust register counts so that function is guaranteed to be preserved--if the 
(undirected) graph of internal connections in some functional element is not connected, then the element 
can be broken up into two or more independent components which can be given different lags. 
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16.3. r(u) - r(v) <_ w(e) wherever u -~ v, and 
16.4. R(ea) -- R(eb) < W ( e a )  - d(f) /c  wherever ? ~ f ~ ?. 

Theorem 16 says that the problem of testing whether a given clock period is 
feasible for a circuit G = (V,  E, d, w> in the extended model can be efficiently 
reduced to an instance of Problem MILP having k = i VI integer variables, 
n -  k = IE[ real variables, and m = 21El + 2[d[ inequalities, where IdJ is the 
number of pairs (Ca, eb) of edges for which d(ea, eb) is defined. Thus the feasible 
clock-period test can be performed in O(Idl(IEI + IV] lg[EI)) time. 

We can reduce the cost of the feasibility test to 0(6 V[ I F I) by using an algorithm 
similar to Algorithm FEAS. The dominant cost of this computation is due to I VI 
executions of an algorithm similar to Algorithm CP, each of which runs in O(I F I) 
time. 

The clock-period-minimization algorithm for circuits in the extended model is 
similar to Algorithm OPT2 which performs a binary search over a set of possible 
values for the minimal clock period. By the same argument used in Corollary 6 for 
the model of Section 2, the optimal clock period must be equal to D(u, v) for some 
pair of vertices u and v, where D and Ware defined as in (4), but with the semantics 
of the notation interpreted in the extended model. The values D(u, v) for all 
connected pairs of vertices u and v can be found in O(] El ] F I + I v I I EI lgl El) time 
by an algorithm similar to Algorithm WD. The key step is to apply Johnson's all- 
pairs shortest-paths algorithm [7] to the edge-weighted graph H = (E, F, wd>, 

where the weighting function is defined by wd(f )  = (w(e), - d( f))  wherever ? -~ f 

in G (that is, wherever e ~ ? in H). Using Fibonacci heaps [2] for the priority queue 
in Johnson's algorithm, a time bound of O([E[ IF[ + [El 2 lg]E[) can be achieved. 
One additional observation is required to prove the claimed time bound of 
O([E I [ F[ + [ V[ I EI lg [E [). The dominant cost of computing W and D by Johnson's 
all-pair shortest-paths algorithm is due to [EI applications of Dijkstra's algorithm 
to find shortest paths from each vertex e E H to each other vertex. Since W and D 
are defined on V • V rather than on E x E, however, we really only need to solve 
[VI problems of the form: Given a vertex v ~ V, find for each e ~ E the weight of a 
shortest path from v to e. Each such problem can be solved by using Dijkstra's 
algorithm to find the shortest-path weights from a set of vertices in H (namely, 

from any x ~ E such that ? Z, v in G), rather than from a single vertex. Using 
Fibonacci heaps, the claimed running time for computing W and D is obtained. 
The total cost of clock-period minimization in the extended model is therefore 
O([EI IFI + I VI IEI lgiEI) + O(I VI iFi lg] V[) = O(IEI IFI + I VI IF[ lg[ V[). 

10. Concluding Remarks. Our goal has been to provide a general framework for 
the precise understanding of circuit timing. Through the use of a simple graph- 
theoretic model, we have been able to cast a variety of circuit timing problems in 
purely combinatorial terms. We believe our approach to be robust. Many other 
circuit models and many other circuit problems can be handled within the basic 
framework. We take time here to discuss a few. 
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Pipelining. An important special case of clock-period minimization is the prob- 
lem of optimally pipelining combinational circuitry. In a combinational circuit, all 
register counts are zero, and thus the circuit graph is acyclic. We can consider the 
circuit to have one input interface v~ and one output interface Vo. By retiming a 
combinational circuit G, we can produce a pipelined circuit Gr which achieves a 
shorter clock period at the cost of introducing a latency of r(Vo) - r(vl) clock ticks 
for signals to propagate from the input interface vl to the output interface Vo. 

In the optimal pipelinin9 problem, we are given a combinational circuit G and a 
nonnegative integer l and asked to produce a retimed circuit G, with minimum 
clock period subject to the constraint that the retimed circuit have latency at most 
I. This problem is just the clock-period-minimization problem with the additional 
constraint that r ( u ) -  r (v )< I. This additional constraint can be modeled by 
augmenting the circuit G with an edge Vo & v~ having weight w(e) = I. Also, the 
methods of Section 8 can be applied to solve the problem of minimizing the state of 
pipelined circuitry subject to upper bounds on clock period and latency. 

Timin9 at External Interfaces. An external interface may be forced to meet 
various timing specifications. For instance, if an external interface has a known 
time delay between the time at which it receives outputs from the circuit and the 
time at which it presents inputs, the external vertex can be assigned a propagation 
delay greater than 0. By augmenting the set of inequalities specified in Theorem 10, 
it is often possible for the optimization algorithms to act subject to other 
constraints. If data must be available to an interface along some edge v & Vo within 
some time t after each clock tick, for example, we can express this by the inequality 

t 
R(v) - r(Vo) < - + w(e), 

c 

where Vo is the vertex representing the interface. This constraint is equivalent to 
saying that we must have A(v) _< t if the register count wr(e) of edge e is zero in the 
retimed circuit. Similarly, if data from the interface is not available on an edge 
Vo & v until some time t after each clock tick, this constraint can be expressed by 
the inequality 

r(v o) -- R(v) <_ w(e) 
d(v) t 

r C" 

Geometric considerations. The optimization methods discussed in this paper can 
be applied largely independently of geometric considerations because although 
retiming causes the addition and deletion of registers, it otherwise leaves the 
functional elements and their pattern of interconnection the same. Thus if a given 
circuit has an area-efficient layout, chances are that a retimed form of the circuit 
can be laid out efficiently. In some cases, however, the floorplan of a circuit may 
limit the number of registers on certain interconnections. 

The inequalities that constrain the retimed system can be augmented to express 
these geometric constraints. For example, to specify an upper bound k on the 
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number of registers that can fit along some edge u .5, v, we can impose the 
constraint 

r(v) - r(u) < k - w(e). 

We can also model a situation in which the first k registers on an edge u Z, v are 
relatively cheap and additional registers are more expensive. Add an auxiliary 
vertex fi in the middle of edge e. Then assign a high cost to registers on the edge 
u ~ fi and a low cost to registers on the edge fi ~ v, but constrain ~ --. v to have at 
most k registers in the retimed system. Solve the system of constraints as in Section 
8. On the other hand, if the first register on a connection is expensive and 
additional registers are cheap, then it is NP-complete to determine whether a 
circuit can be retimed to achieve a specified bound on register cost 
1-20, pp. 182-183]. 

Slowdown.  In Section 7 we showed how a c-slow circuit, which supports c 
independent streams of computation, can be reduced to support a single stream of 
computation by removing registers. The notion of c-slow circuitry offers new 
insight into many circuit designs that are not technically c-slow. Consider, for 
example, a 2-slow circuit in which only one stream of computation is being used. 
The registers in the circuit fall into two equivalence classes, one of which is idle 
during each clock period. Using Algorithm R to remove all the registers in one 
equivalence class is one way to optimize such a circuit. 

Another way to save registers is to modify the functional elements to perform 
slightly different actions on even and odd time steps so that each physical register 
plays the roles of two logical registers, one in each equivalence class. A cursory 
examination of the resulting circuit would not reveal that it is 2-slow according to 
the circuit model, but it would nevertheless communicate with the host only on 
every other clock tick. Although this method for saving registers may sometimes be 
acceptable, the overhead of register multiplexing and the complexity of control 
suggest that Algorithm R is a more reasonable alternative. Moreover, when 
confronted with a circuit that communicates externally only on every other clock 
tick or a circuit whose functional elements perform different operations on 
alternate clock ticks, we may suspect that it is really a 2-slow circuit in disguise, and 
that penetrating the disguise might lead to improved performance and simplifica- 
tion of the control logic. 

Data-dependen t  propagat ion  delays. A major deficiency of the circuit model is its 
inability to represent combinational logic elements with data-dependent propaga- 
tion delays. For example, if a multiplier can produce an answer quickly whenever 
one of its inputs is zero, its propagation delay is data dependent. We would like to 
take advantage of the shorter delay whenever possible in order to speed a larger 
computation. 

While we are unable to model data dependence in the general case, we can 
sometimes use the extended circuit model of Section 9 to model partially the effects. 
As an example, in nMOS circuits 1-16], the transition of a Boolean signal from 0 to 
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1 can take much longer than the transition of the same signal from 1 to 0. We can 
model this situation somewhat by representing each wire as two edges in th,e graph, 
one representing the value 0 on the wire and the other representing 1. We choose 
propagation delays for internal edges of a functional element depending on how 0 
or 1 inputs affect the output. Unfortunately, we cannot model how the delays affect 
the clock period exactly, but upper bounds can be obtained which will, for example, 
properly model the propagation delay through two cascaded inverters. 

There is much more to be understood about clocked circuits. Do powerful 
combinatorial optimization techniques apply to other timing models such as those 
involving multiphase clocking disciplines? Can data-dependent propagation delays 
be handled in a reasonably general setting? Is it possible to solve the state- 
minimization problem with a polynomial-time algorithm that is simpler than the 
typical algorithms for solving minimum-cost flow problems? Can hierarchically 
described circuits be optimally retimed in time proportional to their descriptions? 
Under what circumstances can optimal retimings of parametrized families of 
circuits be algorithmically obtained? 

Retiming is a transformation that can be used to produce efficient circuits, and 
we have presented a variety of algorithms for automatically retiming circuits. Of 
great interest, however, are design methodologies in which retiming is performed 
by an individual instead of an algorithm, as is done in [11], [12], [14], and [20]. 
Retiming seems to be a valuable technique which could be incorporated into both 
circuit compilers and interactive design tools. 
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