

Computer Science and Biology Arthi Ramachandran

Arthi Ramachandran July 7, 2011

- Phylogeny
- What is DNA?
 - Massive codes, tons of information
- What is Computational Biology?
- CS Unplugged
- Phylogenetics Activity
- Conclusion

DNA the Molecule of Life

DNA

chromosomes

gene

cell

G

Double helix polymer

- Backbone
 - Deoxyribose (sugar)
 - Phosphate
- Bases
 - Adenine
 - Cytosine
 - Guanine
 - Thiamine

Instructions for

- How to build a human
- Code for who and what we are
- I human = 3 billion bases
- Humans can't analyze that much information by hand

Moore's law:

transistors on chip doubles in 2 years

Sequencing

- 2001: 1st human genome
 - Billions of dollars
 - 10 year effort
- Now:
 - Thousands of dollars
 - Several days
- Opportunity for research

To analyze DNA, we need to use ideas from

- Computer science
- Mathematics
- Statistics

Computational Biology is everywhere!

Phylogenetics

How different species are related

Genomics

- DNA sequence analysis
- Medical informatics
 - Data mining medical records
- Computational neuroscience

- Activities to teach Computer Science at a middlehigh school level
 - Without computers
 - No programming
- Examples:
 - Binary arithmetic
 - Artificial Intelligence
 - Cryptography
 - Graph Theory

CS Unplugged: Computational Biology

- Biology: evolution
- Biology: phylogenetics
- Mathematics: matrices
 - Only High School level math needed

- Play modified version of the children's game "telephone"
- From final set of messages {A, B, C, D, E}, can we reconstruct who told whom and when?

+ The Biology behind it

Messages ~ DNA sequences

- Passing of a message ~ passing DNA from one generation to the next
- Changes in message ~ mutations

+ The Biology behind it

Phylogenetics

 From the end DNA sequences (current living organisms) we want to construct the evolutionary tree

Set of similar sounding words:

- {chair, prepare, affair, stair}
- {school, rule, cool, fool}
- {dream, stream, theme, beam}

- Construct a message with 5-7 of those words
- Student 1 passes it on to Student 2, 3 and so on

- Whisper the message you hear to the next person
- No repeats allowed if you didn't hear the message properly
- Write what you heard down on the given paper

- A, B, C, D, E are the final messages
- Relabel them V, W, X, Y, Z

W:

V:

- **X**:
- **Y**:
- **Z**:

• How would you construct the tree structure?

Edit distance

• How similar are two of the messages?

	v	W	x	Y
W		-	-	-
x			-	-
Y				-
Z				

+ The Biology behind it

Maximal Parsimony

- Occam's Razor
 - Tend towards simpler theories until we can trade some simplicity for increased explanatory power
 - the simplest explanation is most likely the correct one
- Fewest mutations possible in the tree

- Reconstructing the tree
 - Maximal parsimony
- Smallest entry in matrix
 - Group those messages together

Revise distance matrix

Repeat process

Revise distance matrix

- Is the final tree the same as the original tree?
- If not, why?
 - Random selection to break ties
 - Neutral changes

- Matrix theory
 - Species distance matrix
 - Pairwise distances

+ The Computer Science behind it

Easy to solve with 5 messages of short length

- What if there are hundreds of messages?
- What if each message is hundreds of words? Thousands? Millions?

Evolutionary tree example

- Just one example of what can be done using computer science in the biological sphere
- Computer Science is used everywhere!

CS Unplugged

<u>http://csunplugged.org/activities</u>

