B @000
B @000
High-level Modelingand =
Validation MethodoloE

for Embedded Systems:
Bridging the Productivity Gap

Part 1: Languages and

Models of Computation
Stephen A. Edwards
Departmentcf Computer\Smence
C/ Iumbla University \
WWW. cs. columbla edu/” sedwards /

S@dwards@cs lumbia.edu P

Premise

Shrinking hardware costs, higher levels of integration
allow more complex designs o

_— T

Designers’ coding rate staying constant
Higher-level languages the solution

Succinctly express compl/éx systems

Diversity

Why not just one “perfect” high-level language?

Flexibility trades off analyzability

General-purpose languages
check or synthesize efficie

Domain-specific languages =

Language embodies methodology

Verilog: Model system and testbench

Multi-rate signal processing languages: Blocks With%d
/O rates

/ \
Java’s concurrency: Threads plus per-object locks to
ensure atomic access

Types of Languages

Hardware
Structural and procedural styles
Unbuffered “wire” communication
Discrete-event semantics /

Software /
Procedural
Some concurrency
Memory

Dataflow T T
Practical for srgn/arr processrng AN
Concurrency + buffered communrcatron\

|
|
/"“‘
/
//
/
/
/
e
e
_—

Hybrid
Mixture of other Ideas \\

Hardware Languages

Goal: specify connected gates concisely

P

—

Originally targeted at simulation
Discrete event semantics skip idle portions

Mixture of structural and procedural modeling

Hardware Languages

Verilog
Structural and procedural modellng
Four-valued vectors
Gate and transistor pr|m|t)/és
Less flexible
Succinct
VHDL
Structural and procedural modellng
Few built-in types; pawerful type system
Fewer built-in fea(ures for hardware ﬁrodellng
More flexible N
Verbose \

\\\

\\\

///

|
|
|
|
/
//
/
/
y
/
//
/
/
S
%
e
e
_ :

//

Hardware methodology

Partition system into functional blocks

\
|
|
|
|
|

_—— —

FSMs, datapath, combinational logi
Develop, test, and assemble
Simulate to verify correctness

Synthesize to generate netlist \

Verilog

Started in 1984 as input to event-driven simulator
designed to beat gate-level simulators

Netlist-like hierarchical structu
Communicating concurrent processes
Wires for structural comm/unication,

Regs for procedural communication

| R
I~ -

Verilog: Hardware commu

Four-valued scalar or vector “wires”

wire alu _carry_out;
wire [31:0] alu Ope/amd

X: unknown or conflict

|
|
/’f“
/
//
/
/
/
e
///
_—

Z:. undriven
Multiple drivers and recelvers

Driven by primitive o/éontlnuous asaghment

nand nandl(yz a,\b) \\
assign yl1 = a & b,\\\ |

‘\ \\\ | ///
| ~ | e

Multiplexer Built From Primitiv

module mux(f, a, b, sel); < Verilog programs
built from module

input a, b, sel;‘\\\\\\\\\
and gl(fl, a, nsel), Each module has

output T;

g2(f2, b, sel); an interface

or g3(f, 1, T2); Module may contain

not g4(nsel, sel);
\ structure: instances of

endmodule primitives and other
f1 modules

S

Mux with Continuous AsSSig

module mux(f, a, b, sel);
output T;
Input a, b, sel;

i — P - -
assign~f = sel 7 a © b; LHS Is always set to
endmodule the value on the RHS

Any change on the

causes reevaluation

right

Mux with User-Defined Primiti

primitive mux(f, a, b, sel);

output T;
input a, b, sel; Behavior defined using
table - atruth table that

170 - 1; includes “don’t cares”
g?o > 0; This is a less pessimistic than
9(1& (1) / others: when a & b match, sel Is
117 : 1; - ignored; others produce X
00? : O; o

endtable a A

endprimitive

Verilog: Software Commun

Four-valued scalar or vector “register”

reg a fu _carry_ OUt - =
reg [31:0] alu Oper@nd

Does not always correspond to a latch
Actually shared memory

Semantics are convenient for simulation

Value set by proced/y;al a§3|gnment: \
always @(posedge clk) \

count = count + 1;\\

| _— |
| _— |
— . |
\ /
\ /
\\ //
N\ /
\ /
AN /
. e
AN yd
. pd
N e
™~ rd

a

sel

Multiplexer Built with Always

module mux(f, a, b, sel); . may

output T; |
input a, b, sel; contain one or mor
reg ¥; always blocks

always<ga or b or sel) itivity li
it (sel) f = a; \ sensitivity s
else f = Db; contains signals

~ whose change
~ makes the block
. execute

endmodule

—e

Multiplexer Built with Always

module mux(f, a, b, sel);

?ﬁ;ﬂgtaﬁb sel - A reg behaves like
reg T; < memory: holds its value

always @(a or b or sel) until imperatively
'f (sel) T = assigned otherwise

else T = Db;
endmodule \ Body of an always block
contains traditional

imperative code

a

se| —e

Initial and Always

Run until they encounter a delay

initial begin -
#10 a = 1; b = 0O;
#10 a = 0; b = 1;

end

or a wait for an event /

always @(posedge

always begin
waitt(n);

\
wailt Ni);///////

a = 0;
a 1; /

end |

\
\\
\
\
\
|
|
|
|
|
|
|
|
|
/
|
/r‘
//
_—

Blocking vs. Nonblocking

Verilog has two types of procedural assignment

Fundamental problem: T

e In a synchronous system, all flip-flops sample
simultaneously /

« In Verilog, always @(posedge clk) blocks run in
some undefined sequenc

e I
|
7
\
\
\
\
\\
\
\
/ \
/
/
/ \
//” \\\
\
/
| \
| |

A Flawed Shift Register

This does not work as you would expect:

always @(posedge ClK)/;;/; di;

always @(posedge clk) d3 = d2;
always @(posedge clk) d4 = d3;

|
|
|
|
|
|
|
|

/

/

//
/
_

These run in some order, but you don’t know which

\
‘
|
\
\
|
|
|

e

\ /

\ /

\ /

\ /

\ /

y \ /

/ \ \\
\
/ \
\
/
/

“ \

i |

| |

|

~__ |

Non-blocking Assignments =

This version does work: Nonblocking rule:

reg dl, d2, d3, d4; _— RHs evaluated
when assignment
runs

always @(posedge clk) d2 <= di; \

always @(posedge cfk) d3 <= d2;
always @(posedge cIk) d4\<= d3;

\HS updated only -

after all events fo
the current instant
~ haverun

Nonblocking Can Behav

A sequence of nonblocking assignments don’t

communicate P -

a = 1; 1;

b = a; b <= a;

cC = b; . C <= b;
// \\\

Blocking assignment: Nonblocking assignment: |
|

a=b=c=1 a=1 |
~ b=oldvalue of a /
- c=oldvalue of b

\ /

Nonblocking Looks Like La

RHS of nonblocking taken from latches

RHS of blocking taken from wires

a
b

o Q

|
|
/
///
/
%

VHDL

Designed for everything from switch to board-level
modeling and simulation L

Also has event-driven semanti

Fewer digital-logic-specific constructs than Verilog

//
/

More flexible language

Powerful type system

More access to even/dﬁ{/en machin&y\
\\

Entity: interface of an object

entity mux2 1Is
port(a,b,c: 1n BIt;
end,;

d: out Bit);

Architecture: implementatibn of an object \
architecture DF of mux2 is

beg in / —_ ’
d<=c? 8/./b i \ /
end DF; | | | /

/

/
/

VHDL: Architecture cont

Structural, dataflow, and procedural styles:

— -

architecture ex of foo 1s
begin
11: Inverter port map(a, Y);

/
/
/
/

foo <= bar + baz:

process begin
walt for 10ns; |

end /

VHDL: Communication

Processes communicate through resolved signals:

architecture Structure of mux2 is
signal 11, 12 : Bl

.

Processes may also use local variables:

process |

variable count\:: Bit_Vector (3 downtc
begin T

count : = €9dﬁ£* 1; \\\\
end / \\\\\\ \

VHDL: The wait statem

Wait for a change

\
|
|
|
|
|

_—— —

wailt on A, B;
Wait for a condition

wailt on Clk until 17

Wait with timeout

wailt for 10ns;
wailt on CIlk u

VHDL and Verilog Compa

Verilog VHDL

Structure ° ®

Hierarchy o e .

Concurrency ° °

Switch-level modeling / []

Gate-level modeling e [] \

Datafow modeling e o \

Procedural modeling ° °

Type system | °

Event access B C

Interface/implementation e

Local Variables \ |

Shared memory e e /
|) e \)

°

Wires °
Resolution functions \S
e Full support [Partial support

Software Languages

Goal: specify machine code concisely
Sequential semantics: Perform this operation, Change
system state
Raising abstraction: symbols, expressions, control-flow,
functions, objects, templatés, garbage collection \
/ | \ |
\\\ \\ //, .
! /

Software Languages

C

Adds types, expressions, control, functions

/// \\\

C++ / /

Adds classes, mherrtance namespaces, templates,

exceptions
Java
|
Adds automatic garbage collection, threads

Removes bare po/ nters multiple mhe\rtance

//

Real-Time Operatrng Systems

Add concurrency timing c\rtrol

Software methodology

\
\
\
|
|
|
|
|
|
|
|
/
/
/f

C

Divide into recursive functions
C++

Divide into objects (data and methods)
Java /

Divide into objects, threads

—_

Real-Time Operatin

ystems \
Divide into processes, assign priorities

\\
\

/
/

/

|

The C Language

“Structured Assembly Language”
Expressions with named variables, arrays
= b + c[10];
Control-flow (conditionals,/1oops)
for (i=0; i<10; i++) {7 ... */}

Recursive Functions I

N

int flb(lnt/X//% \\\\

return x/* 0 ? 1 - Fib(x-1) + flb(x 2’

\:;

Declarators

Declaration: string of specifiers followed by a declarator

basic type

_ _ ~ N _
static unsigned i1nt (*f[10])(int, char*)[10];
W#

specifiers declarator

Base types match the processor’s natural ones.

Declarator’s notation matches that of an expression: use it
to return the basic type.

Largely regarded as the worst syntactic aspect of C: both
pre- (pointers) and post-fix operators (arrays, functions).

C Storage Classes

/* fi xed address: visible to other fi les */
I nt gl obal stati c;

/* fi xed address: only visible within file */
static int file_stati c;

[* parameters always stacked */
I nt foo(int auto_par arr)

/* fi xed address: only V|S|ble to function
static int func_statl C;

[* stacked: only visible to functlon */
int auto., auto-a[1l0];

T~

[* array explicitly a;%ﬂed on heap (pomtériacked) */

doubl e *aut o_d
nalloc(3|z of(double)*5)

/[* return value passed In register or stack */

return aut0|

} | -
\ o

Three regions:
Static Memory
The Stack

¥/ The Heap

/
\) /
\ /
\

C++: Classes

C with added structuring features

Classes: Binding functions to data

class Shape {
int x,y;

void move(dx, dy) { x += dx; y += dy; }
/

¥ |

Shape b;
b.move(10,20);

\
|
|
|
|
|
|

/

C++: Inheritance

Inheritance: New types from existing ones

class Rectangle : public

int h, w;

voild resize(hh, ww) { h = hh; w
}: /
Rectangle c;
c.resize(5,20); D
c.move(10,20); \\\\\\

C++: Namespaces

Grouping names to avoid collisions

\\

namespace Shape {
class Rectangle { /7* ... */ };
class Circle { /* . */ };

int draw(Shape* s);
void print(Shape* s);

\
Shape::Rectang{;/:; \\\\\\

/
/

|

|

\
|
|
|
|
|
|
|
|

/
/ﬁ
/

C++: Templates

Macros parameterized by types

template <class T> void s

1
// ..

T tmp;

tmp = ar[i];

// ... |
}

int a[10];
sort(a); /| Creates sort<int>

\

(T* ar)

/

C++: Exceptions

Handle deeply-nested error conditions:
class MyException {}; // Define exception

void bar()
{

} “/
void foo() {

try { T |
bar(); \ j
} catch (MyException e) { /

/* ... */ [/l Handle the exception
} ,’/

throw MyException; // Throw exception
/

}

C++: Operator Overloa

Use expression-like syntax on new types

class Complex /* ... */ ; N
Complex operator + (Com ex &a,
{

// ..
h

Complex X, V; /

:y+5;

int b)

C++: Standard Template

Library of polymorphic data types with iterators, simple

searching algorithms L
vector: Variable-sized ary
list: Linked list / \

map: Associative array

queue: Variable-sized queue

string: Variable-sized character st?\i\ﬂgs\with memory
management |
// \\\

\
\

N

. -
IS J _—

Java: Simplified C++

Simpler, higher-level C++-like language

Standard type sizes fixed (e.g., intis 32 bits)
No pointers: Object references only

Automatic garbage collect/i/, n \

No multiple inheritance ekcept for interfaces: method
declarations without definitions

el ™~

\
\
|
|
|
|
|
|
|
|
|
|

\ /
\ /
\ /
\ /
\ /
\ /
\ /
/ \ /
/
/
/
/"’
/
/
| \
| \

Java Threads

Threads have direct language support

Object::wairt() causes a thread to suspend |tself and
add itself to the object’s wait sgt

sleep() suspends a thread for a specified time period

Object: :notify(), notifyAll() awakens one or
all threads waiting on the object
|

yield() forces a context switch

Java Locks/Semaphores

—

Every object has a lock; at most one thread can acquire

Synchronized statements or methods wait to acquwe the
lock before running |

Only locks out other synchrdﬂnized code: programmer
responsible for ensuring safety

public static void abs(int[] vals) {
synchronized (vals) {
for (int i =0; 1 < vals. length; i++)
1t (vals[l] < 0) h

vals[i] = -vals[i];

Java Thread Example

Class OnePlace { :
Element value; synchronized

acquwesiock

public synchronized“void

write(Element e) { wait
while (value L= nLrII) walt(); — suspen\ds
value = e; ! thethrl

\ notlfyAII(),

public synchronized Element read() {
while (value == null) Walt()
Element e = value; value = null;

notufyAll() not|fyAII

return e;
awakens all waiting
¥ threads |

ead

Java: Thread Scheduling

Scheduling algorithm vaguely defined: Made
implementers’ lives easier, programmers’ lives harder

/// \\\

Threads have priorities /

Lower-priority threads guaranteed to run when \
higher-priority threads are blocked
No guarantee of fairness among equal-priority threads

|

Real-Time Operating S

Provides concurrency to sequential languages

—_

Idea: processes handle function, operating syst
handles timing

/

Predictability, responsiveness main criteria

RTOS scheduling

Fixed-priority preemptive
Sacrifices fairness to reduce context-switching overhead

Meeting deadlines more important

Process preempted when higher-priority process is |
activated / \

Process otherwise runs until it suspends

| —

Priority-based Preemptive

Scheduling

Always run the highest-priority runnable process

A] |

_A |

\\

[B] |

B

==

C

\\\\

B

~
| \\
| |

Bl A [B] C_

l

\

\

\

\\
N\
\\
.
AN
\\

,/
/////

Rate Monotonic Analysis

Common priority assignment scheme

\
|
|
|
|
|
/
/
//
/
/
/
/

System model:
Tasks invoked periodically
Each runs for some frq/c/tion of their period \
Asynchronous: unrela{ed periods, phases |

Rate Monotonic AnaIyS|s assigns hlghest priorities to

tasks with smallest?ezrods \

\ \ /
\ \ /

Priority Inversion

Shared resources can enable a lower-priority process to
block a higher-priority one. B

> > ‘
A A A A | T |
| Process 1 misses deadline
\

Process 1 blocked waiting for resource

Prqpe”éé 1 preempts Process 2
Process 2 aéduires lock on resour&*e\
Process 2 begins running.

C C++ Java
Expressions ° ° L
Control-flow o o °
Recursive functions ,/ ° °
Exceptions O o)
Classes & Inheritance o o
Templates °
Namespaces e e
Multiple inheritance o ‘\\D
Threads & Locks \b\

o\

Garbage collection
e Full support

\ [
[] Partig\sg\pport

RTOS

\\\

N
g
AN
AN

Dataflow Languages

Best for signal processing

Concurrently-running processes communicating through
FIFO buffers

FIFO Buffe

Process 1

7> Process 2 \
FIF/ Buffer |
FIFO Buffer

Dataflow Languages

Kahn Process Networks
Concurrently-running sequential processes
Blocking read, non-blocking write
Very flexible, hard to SG edule
Synchronous Dataflow |
Restriction of Kahn Ne/tyvorks\

Fixed communi?fﬁn \
\

Easy to schedule \

Dataflow methodology

Kahn:

Write code for each process

Test by running

SDF:

Assemble primitives: adders, downsamplers
Schedule | * |
Generate code

Simulate

process f(in iInt u,

{

int i: bool b = true: >

I%ﬁ.ace
> wait(v); Incluc

printfC%i\n", i); FIFO!

for (;;) {

1 = b ? wart(u)

send(1, w); |
b 3 1b;

¥ L
} oa V%e/s \oren N the FIFO,

into a FIFO \\ blocking if emp

without blocking

wait() returns

~ the next token

™~ | -

U)/*gf/

ty

process f(in Int u, In Int v, out 1INt w)

{
int i- bool b = true:)
for (;;) { //////
I = b ? wart(u) : walt(v);
printfC%i\n”, i);
send(i, w); U
b= I

\

Process alternately reads from u and v, prlnts the data

value, and wrltes it tow
\

Kahn Networks: Determinac

Sequences of communicated data does not depend on
relative process execution speeds L

A process cannot check Whether data IS avallable before

attempting a read

A process cannot wait for data on more than one port at
time

Therefore, order of reads writes depend only on data, n
its arrival time N

Single process reads or writes each channel

Ot

Scheduling Kahn Networks

Challenge is running without accumulating tokens

/// \\\

| — Only consumes
Tokens will tokens from A

—— ”//
accumulate here

Always
i g { o consumes
Always emlt tokens \ tokens

One solution, due to Tom Parks Start with bounded
buffers and mcrease the size of the smallest buﬁer when/
buffer-full deadlqck occurs. N |

Parks’ Algorithm in Action

Run C

Parks’ Algorithm in Action

A X C A—c| |A
B D B | D B
Run C Run A

B blocked waiting for quce iIn B—C buffer

Run A, then C, then A, then C \

System will run mdeflnltely\

N\
\\
\
\\
.
N
\\

\\
\
\\

n C

Synchronous Dataflow

Each process has a firing rule: Consumes and produces
fixed number of tokens every time

Predictable communication: easy scheduling
Well-suited for multi-rate signal processing

A subset of Kahn Networks: deterministic

Q

Multi-rate SDF System

DAT-to-CD rate converter
Converts a 44.1 kHz sampling rate to 48 kHz
1 1 2 3 8 7 5 1
/ \
Upsampler o |
\ \ /
! Downsample \
\ /

Delays

Kahn processes often have an initialization phase

SDF doesn't allow this because rates are not always

constant / /

Alternative: an SDF systen/}/hway start with tokens in its
buffers

These behave like signal-processing-like delays
|
Delays are sometimes necessary to avoid deadlock

/ RN

/// \\\ \\ //

//

\ \ /
\ /
\ /

Example SDF System

FIR Filter (all unit rate)

dup

-

dup

Duplicate

/

-

////

/////

~ One-cycle

dup

/ multipl
\/ Y A \/ Y (filter
X C Xc Xc Xc Xc coeffic
v /v vy e
| + | + —| + —| + —
/ : | \\\ \ \
Adder

dup

e

delay

\\\

Conste

~

ant
y \

lent)
|

SDF Scheduling: Calculati

Each arc imposes a constraint

3/CL—2b\
- 4b—3d

1 4
b / b — 3¢

/
/

3 2 4 /3 2c — a
Y A
d — 2a

N

|
o O O o o

2c
3¢

.

SDF Scheduling: Detalls

a=2b=3

Possible schedules:
v BBBCDDDDAA

/ BDBDBCADDA \
C Q6 d BBDDBDDCAA

: /
B(ﬁg\n ot valid /

Kahn and SDF

Concurrent
FIFO communication
Deterministic
Data-dependent behavior
Fixed rates
Statically Schedulabl

Kahn SDF

Esterel’s Model of Time

Like synchronous digital logic, it uses a global clock

Provides precise control over which events appear in
which clock cycles

Inputs presented

Computation \
4 Outputs ready \
\‘ |

//// V\

Cl

ock tlc

Two Types of Esterel Stat

Combinational Sequential

Execute in one cycle Take multiple cycles

A bounded number may he only statements that
execute in a single cycle ~ consume any time \
Examples: Examples: |
emit ~ pause
present / if / i - await \\
loop © sustain \ /

Simple Example

module Examplel:
output A, B, C;

emit A;
present A then
emit B
end;
pause;
emit C

end module

>

/

Seguencing and Decisi

emit A;
emit B;
pause;
loop
present C then emi
present E then em

pause;
end |
C C -
E E////)//
} } } -
A D ﬁ/
B F F

Cconcurrency

[
|

awalt A; emit C

awalt B; emit D

1:
emit E
A B | N
4 4 >
C D
E

o Parallel statements
start in same cycle

Block terminates on
all have terminated

The Abort Statement

abort A Normal Termination
ause: —_ > S
pause; \
emit A B Aborted terminatioK
when B: — 7
_ C // \\\
emit C
B Aborted termination:

>

: C ~ emit A preempted

e \\

P/ A N\O@al Termination
ST AW >~ B not checked /
/ \ in first cycle
‘ (like await)

The Suspend Stateme

\
|
|
\
/

suspend
loop .
emit A; pause; paus \\\\\\\\
end
when B
A A B A B A

The Trap Statement

trap T 1In
[— ~ Normal termination
A D —
pause; from first proces%\
emit A; 5
pause; o // g | \
exit T A D Emit C also runs \
| C
await B; o
_ - B cond process
emit C — >
1 ' A C allowed to run
/ \ even though /
end trap; / D . \
_ first process
emit D .|
h as exited

Nested Traps

trap T1 1In
trap T2 1In

1
exit T1

11
exit T2

1

end;

emit A
end;
emit B

Outer trap takes
precedence; control
transferred directly to t

uter trap statement.

emit A not allowed to run.

SDL

Concurrent FSMs, each with a single input buffer

[abreset |

Finite-state
. SR
machines —
defined using | [&
B
\Vaiy
C

g—

—

Communication
channels define
what signals they
carry

flowchart
notation

I

.

2
—t N

SDL Symbols

Conclusions

Many types of languages
Each with its own strengths and weaknesses
None clearly “the best”
Each problem has its ownbest language
Hardware languages focus,on structure
Verilog, VHDL ’/
Software languages focus) on sequencing
Assembly, C, C++, Java RTOSes
Dataflow languages focus on moving data
Others a mixture
Esterel, SDL

Shameless Plug

All of these languages are
discussed in greater detall
in \

Stephen A. Edwards.

LANGUAGES Languages for Digital
FOR

DIGITAL Embedded Systems.

EMBEDDED “Kluwer 2000.

STEPHEN A. EDWARDS

KLUWER ACADEMIC PUBLISHERS

