Compiling Esterel
Stephen A. Edwards

Department of Computer Science
Columbia University
www.cs.columbia.edu/ sedwards

Outline

Introduction to Esterel and Existing Compilers
My Software Compiler [DAC 2000, TransCAD 2002]
My Hardware Compiler [SLAP 2002, IWLS 2002]

The Esterel Language

Developed by Gérard Berry starting 1983

Originally for robotics applications

Imperative, textual language

Synchronous model of time like that in digital circuits

Concurrent

An Example

/ Force signal present in this cycle
emit B;

present C then «<—— Make D present if C is
emit D end,

An Example

/ Wait for next cycle where A is present
await A,
emit B;
present C then
emit D end,;

pause \
Walit for next cycle

An Example

loop < Infinite Loop
await A,
emit B;
present C then
emit D end,;
pause

end

An Example

every R do
loop
await A,
emit B;
present C then
emit D end,;
pause
end
| | < Run Concurrently
loop
present B then
emit C end,;
pause
end

end

An Example

every R do
loop . \ Restart on R
awailt A,
emit B;
present C then
emit D end,;
pause
end
||
loop
present B then
emit C end,;
pause
end
end

An Example

every R do
loop
await A;
emit B;
pregent C th
mit D end
pagse
end
||
loop
present B th@n
emit C end;
pause
end
end

Same-cycle bidirectional communication

An Example

every R do
loop
await A;
emit B;
present C then
emit D end;
pause
end
| |
loop
present B then
emit C end;
pause
end
end

Good for hierarchical FSMs
Bad at manipulating data

Hardware Esterel variant
proposed to address this

Automata Compilers

Esterel is a finite-state language, so build an automata:

loop switch (s) {
emit A; await C; case 0: A=1;s =1, break;
emit B; pause case 1:if (C) B =1; s =0; break;
end }

V1, V2, V3 (INRIA/CMA) [Berry, Gonthier 1992]
Fastest known code; great for programs with few states.

Does not scale; concurrency causes state explosion.

Netlist-based Compilers

entry %
loop

emit A; await C;
emit B; pause

end
=]

-

B

A =-entry || s2q;
cf = 1C && slq;
sld = cf || A

B =s2d = C & slq;

Clean semantics,
scales well, but
Inefficient.

Can be 100 times
slower than automata
code.

Other Esterel Compilers

Control-flow-graph based
My work: EC [DAC 2000, TransCAD 2002]
Produces very efficient code for acyclic programs only
Discrete-event based
SAXO-RT [Well et al. 2000]
Produces very efficient code for acyclic programs only
Being improved at Esterel Technologies?
Both proprietary; unlikely to be released.

Neither currently copes with statically cyclic programs.

My Esterel Compiler for Software
Presented at DAC 2000 (also TransCAD 2002)

Used inside Synopsys’ CoCentric System Studio to
generate control code

Overview

if ((sO & 3) == 1) {

every R do R 1t (S {
0% it A & S s3 =1 s2 = 1; sl = 1;
gggeBn;tCthen 0 } el se
emit D end; 1 o 2 | B if (sl >> 1)
pause t=0 t=1 = 3
end 0 sl = 3;
||Ioop B <B 0 D el -SG { B
present B then if ((s3 &3) ==1) {
ot C end; T Co o<1 s3 = 2; t3 = LI
end <> D } else {
end s=2 s=1 " =1 t3 = L2,
<; ! }
Esterel Concurrent Sequential C code

Source CFG CFG

Translate every

every R do
loop
await A,
emit B;
present C then
emit D end,;
pause
end
| |
loop
present B then
emit C end;
pause
end
end

Add Threads

every R do
loop
await A,
emit B;
present C then
emit D end,;
pause
end
|
loop
present B then
emit C end,;
pause
end
end

Split at Pauses

every R do
loop
await A;
emit B;
present C then
emit D end,;
pause
end
|
loop
present B then
emit C end,;
pause
end
end

s=2

s=1

Add Code Between Pauses

every R do
loop
await A;
emit B;
present C then
emit D end;
pause
end
| |
loop
present B then
emit C end,;
pause
end
end

Translate Second Thread

every R do
loop
awalit A;
emit B;
present C then
emit D end:;
pause
end
| |
loop
present B then
emit C end;
pause
end
end

Finished Translating

every R do
loop
await A,
emit B;
present C then
emit D end;
pause
end
||
loop
present B then
emit C end,;
pause
end
end

Add Dependencies and Schedule

every R do
loop
await A,
emit B;
present C then
emit D end;
pause
end
||
loop
present B then
emit C end,;
pause
end
end

Run First Node

Run First Part of Left Thread

Context Switch

t=0

Run Right Thread

1 2

A

B <B

ST
D

S=2 s=1

Context Switch

X

1 2

sS=2 S

Finish Left Thread

%
1 2
A
B <B
C C
D
0 1
s=2 || s=1 C
D
s=2 s=1

Completed Example

s=2

s=1

My Esterel Compiler for Hardware
The ESUIF Open Source Esterel Compiler
(Work in Progress)

Presented at SLAP 2002, IWLS 2002

Translation to CCFG

every R do é
loop
await A;
emit B; |
present C then
emit D end,;
pause RO <A>
T DO
loop N
present B then
emit C end,;
pause O
end s2=0||[s2=0
end
52|:1 32|:2

sS3

s3

s3

s2=1

s3=1

Translation to PDG

A

S2

S

s3

s3

s2=0

s2=1

s3=1

s2=1

Translation to Circuitry

D
/@ s2=1| [s3=1
S2
5220 & $2=0 SDQZZ
s2=1 s2=1 a'D [
AD
o
R 0 @ s2=1
D@ A\ £ O) [s2=0

0> [s2=0

Summary

Introduction to Esterel and Existing Compilers
Synchronous, Concurrent, Textual Language
Automata, Netlist, and Control-based compilers

My Software Compiler [DAC 2000, TransCAD 2002]

Translate to Concurrent CFG, schedule, then
synthesize Sequential CFG

My Hardware Compiler: ESUIF [SLAP 2002, IWLS 2002]
Translate CCFG to Program Dependence Graph
Trivially translate PDG to circuitry

Open-source, under development

Thanks For Your Attention
Stephen A. Edwards

Department of Computer Science
Columbia University
www.cs.columbia.edu/ sedwards
sedwards@cs.columbia.edu

