
Making Cyclic Circuits Acyclic

Stephen A. Edwards

Department of Computer Science,
Columbia University

www.cs.columbia.edu/˜sedwards

sedwards@cs.columbia.edu



Goal

Given a constructive cyclic circuit, create an equivalent
acyclic circuit.

Applications:

• Replaces the resynthesis portion of Esterel’s
sccausal.

• Can be adapted for Esterel software synthesis.

• Useful when solving large systems of equations.



Related Work

Malik’s algorithm, 1993

• Remove enough gates to make the graph acyclic

• Make that many copies of the circuit

Bourdoncle, 1993

• Recursive SCC decomposition

• Remove a single gate at each step

Edwards’ Thesis, 1997

• Bourdoncle variant

• SCC decomposition, may remove two or more gates
at each step



Proposed Algorithm

1. Determine all possible schedules

(Each a circuit fragment)

2. Merge (overlay) fragments to generate a small circuit

Advantage: takes into account actual circuit behavior, not
approximation thereto.

Disadvantages: may be too many schedules and optimal
merging appears difficult



Example Circuit

a b

c

d

ex

y

z



Controlling Value

A controlling value is a 0 input on an AND gate, a 1 on an
OR.

In constructive logic, this value causes the gate to ignore
the rest of its inputs.

∧ ⊥ 0 1

⊥ ⊥ 0 ⊥

0 0 0 0

1 ⊥ 0 1

∨ ⊥ 0 1

⊥ ⊥ ⊥ 1

0 ⊥ 0 1

1 1 1 1



Theorem

For an SCC to be constructive, at least one of its external
inputs must be take a controlling value.

Proof by contradiction: if all inputs are non-controlling, by
definition, the output of each gate is only affected by
values within the SCC. These are initially all ⊥, meaning
all outputs are all ⊥ and therefore the non-constructive
least fixed point.

Consequence: Any possible constructive schedule must
start at a controlling value at an input.

Consequence: Recursive SCC decomposition obtained by
injecting all possible controlling values will find all possible
constructive schedules.



Intuition

SCC

1

If every such external input was set to 1 (all AND gates),
the SCC would have a fixed point of all ⊥.

Thus, at least one of these external inputs to 0. This
condition is necessary, but not sufficient.



Finding all schedules (step 1)

a b

c

d

ex

y

z

a b

c

d

e
x=0

y

z

0
0

1

1



Finding all schedules (step 2)

a b

c

d

ex

y

z

Still cyclic: Deal with it later

a b

c

d

ex

y=0

z

1



Finding all schedules (step 3)

a b

c

d

ex

y

z

a b

c

d

e

y

z=0

0

0

0

1



Finding all schedules (step 4)

We found two acyclic schedules and one cyclic schedule:

a b

c

d

ex

y=0

z

1

The three inputs to this are x, z, and the output of gate c.

However, x=0 and z=0 were earlier found acyclic. And the
output of gate c is fixed at 1 since y=0.

We are done: we won’t get any other acyclic schedules
from this.



Merging Schedules (part 1)

a b

c

d

e
x=0

y

z

0
0

1

1

a b

c

d

e

y

z=0

0

0

0

1



Merging Schedules (part 2)

a b

c

d

e
x=0

y

z

0
0

1

1

a b
c

d
e

y

z=0
0 00

0

Second is same as before, just unrolled.



Merging Schedules (part 3)

Two choices:

a b

c

d

e
x=0

y

z

0
0

1

1

then a b
c

d
e

y

z=0
0 00

0

or

a b
c

d
e

y

z=0
0 00

0

then
a b

c

d

e
x=0

y

z

0
0

1

1



Merging Schedules (part 4)

a b

c

d

e
x=0

y

z

0
0

1

1

then a b
c

d
e

y

z=0
0 00

0

a b

c

d

e
a′ b′ c′

x
e′

y

z



Merging Schedules (part 5)

a b
c

d
e

y

z=0
0 00

0

then
a b

c

d

e
x=0

y

z

0
0

1

1

a b

c

d
e

d′

e′

y

xz
b′ c′



Schedule Comparison

Dumb: abcdeabcdeabcdeabcdeabcde = 25
Bourdoncle: b c d e a b c d e = 9

a b

c

d

e
a′ b′ c′

x
e′

y

z

= 8

a b

c

d
e

d′

e′

y

xz
b′ c′

= 7



Simplifying the circuit

The second one,

a b

c

d
e

d′

e′

y

xz
b′ c′

is definitely smaller (seven gates versus eight).

What values should the b′ and c′ inputs take?

Knaster/Tarski/Kleene/Cousot theorem says they should
be ⊥. But it’s difficult to build circuits that manipulate ⊥.

Can we do better?



Theorem

Formerly internal signals that have become inputs may be
set to either 0 or 1 without changing the function.

Proof. The least-fixed-point function F (i.e., the acyclic
circuit) is monotonic, and is guaranteed to be causal, i.e.,
the least fixed point never contains ⊥ values. Since F is
monotonic and ⊥ v X by definition, F (⊥) v F (X).
However, F (⊥) is the least fixed point and fully defined,
therefore we must have F (⊥) = F (X).

Consequence: We can greatly simplify the circuit.



Simplifying the Circuit

a b

c

d
e

d′

e′

y

xz
b′=0 c′=0

0

1

1

0
0

c

e

y

z
e

a0

b1
c

d



Did we get it right?

a b

c

d

ex

y

z

c

e

y

z
e

a0

b1
c

d

x y z a b c d e

0 - - 0 1 ¬y z ¬y ∧ z

- - 0 0 1 ¬y 0 0

1 0 1 ⊥ ⊥ 1 ⊥ ⊥

1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥



Conclusions

A procedure for building an acyclic circuit from a cyclic one

Can produce very compact circuits, especially after
simplification

Smaller than Malik or Bourdoncle

Basic idea: enumerate schedules, merge them

Potential problems: too many schedules, non-optimal
merging

What I haven’t shown you: (complex) details of the search
algorithm.


