Making Cyclic Circuits Acyclic

Stephen A. Edwards

Department of Computer Science, Columbia University
www.cs.columbia.edu/ॅsedwards
sedwards@cs.columbia.edu

Goal

Given a constructive cyclic circuit, create an equivalent acyclic circuit.

Applications:

- Replaces the resynthesis portion of Esterel's sccausal.
- Can be adapted for Esterel software synthesis.
- Useful when solving large systems of equations.

Related Work

Malik's algorithm, 1993

- Remove enough gates to make the graph acyclic
- Make that many copies of the circuit

Bourdoncle, 1993

- Recursive SCC decomposition
- Remove a single gate at each step

Edwards' Thesis, 1997

- Bourdoncle variant
- SCC decomposition, may remove two or more gates at each step

Proposed Algorithm

1. Determine all possible schedules
(Each a circuit fragment)
2. Merge (overlay) fragments to generate a small circuit

Advantage: takes into account actual circuit behavior, not approximation thereto.

Disadvantages: may be too many schedules and optimal merging appears difficult

Example Circuit

Controlling Value

A controlling value is a 0 input on an AND gate, a 1 on an OR.

In constructive logic, this value causes the gate to ignore the rest of its inputs.

\wedge	\perp	0	1
\perp	\perp	0	\perp
0	0	0	0
1	\perp	0	1

\vee	\perp	0	1
\perp	\perp	\perp	1
0	\perp	0	1
1	1	1	1

Theorem

For an SCC to be constructive, at least one of its external inputs must be take a controlling value.

Proof by contradiction: if all inputs are non-controlling, by definition, the output of each gate is only affected by values within the SCC. These are initially all \perp, meaning all outputs are all \perp and therefore the non-constructive least fixed point.
Consequence: Any possible constructive schedule must start at a controlling value at an input.
Consequence: Recursive SCC decomposition obtained by injecting all possible controlling values will find all possible constructive schedules.

Intuition

If every such external input was set to 1 (all AND gates), the SCC would have a fixed point of all \perp.
Thus, at least one of these external inputs to 0 . This condition is necessary, but not sufficient.

Finding all schedules (step 1)

Finding all schedules (step 2)

Still cyclic: Deal with it later

Finding all schedules (step 3)

Finding all schedules (step 4)

We found two acyclic schedules and one cyclic schedule:

The three inputs to this are x, z, and the output of gate c. However, $x=0$ and $z=0$ were earlier found acyclic. And the output of gate c is fixed at 1 since $\mathrm{y}=0$.
We are done: we won't get any other acyclic schedules from this.

Merging Schedules (part 1)

Merging Schedules (part 2)

Second is same as before, just unrolled.

Merging Schedules (part 3)

Two choices:

or

Merging Schedules (part 4)

Merging Schedules (part 5)

Schedule Comparison

Dumb: abcdeabcdeabcdeabcdeabcde $=25$ Bourdoncle: bcdeabcde $=9$

$$
=8
$$

$$
=7
$$

Simplifying the circuit

The second one,

is definitely smaller (seven gates versus eight).
What values should the b^{\prime} and c^{\prime} inputs take?
Knaster/Tarski/Kleene/Cousot theorem says they should be \perp. But it's difficult to build circuits that manipulate \perp.

Can we do better?

Theorem

Formerly internal signals that have become inputs may be set to either 0 or 1 without changing the function.

Proof. The least-fixed-point function F (i.e., the acyclic circuit) is monotonic, and is guaranteed to be causal, i.e., the least fixed point never contains \perp values. Since F is monotonic and $\perp \sqsubseteq X$ by definition, $F(\perp) \sqsubseteq F(X)$. However, $F(\perp)$ is the least fixed point and fully defined, therefore we must have $F(\perp)=F(X)$.

Consequence: We can greatly simplify the circuit.

Simplifying the Circuit

Did we get it right?

x	y	z	a	b	c	d	e
0	-	-	0	1	$\neg \mathrm{y}$	z	$\neg \mathrm{y} \wedge \mathrm{z}$
-	-	0	0	1	$\neg \mathrm{y}$	0	0
1	0	1	\perp	\perp	1	\perp	\perp
1	1	1	\perp	\perp	\perp	\perp	\perp

Conclusions

A procedure for building an acyclic circuit from a cyclic one
Can produce very compact circuits, especially after simplification

Smaller than Malik or Bourdoncle
Basic idea: enumerate schedules, merge them
Potential problems: too many schedules, non-optimal merging

What I haven't shown you: (complex) details of the search algorithm.

