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Goal

Given a constructive cyclic circuit, create an equivalent
acyclic circuit.

Applications:

• Replaces the resynthesis portion of Esterel’s
sccausal.

• Can be adapted for Esterel software synthesis.

• Useful when solving large systems of equations.



Related Work

Malik’s algorithm, 1993

• Remove enough gates to make the graph acyclic

• Make that many copies of the circuit

Bourdoncle, 1993

• Recursive SCC decomposition

• Remove a single gate at each step

Edwards’ Thesis, 1997

• Bourdoncle variant

• SCC decomposition, may remove two or more gates
at each step



Proposed Algorithm

1. Determine all possible schedules

(Each a circuit fragment)

2. Merge (overlay) fragments to generate a small circuit

Advantage: takes into account actual circuit behavior, not
approximation thereto.

Disadvantages: may be too many schedules and optimal
merging appears difficult
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Controlling Value

A controlling value is a 0 input on an AND gate, a 1 on an
OR.

In constructive logic, this value causes the gate to ignore
the rest of its inputs.
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Theorem

For an SCC to be constructive, at least one of its external
inputs must be take a controlling value.

Proof by contradiction: if all inputs are non-controlling, by
definition, the output of each gate is only affected by
values within the SCC. These are initially all ⊥, meaning
all outputs are all ⊥ and therefore the non-constructive
least fixed point.

Consequence: Any possible constructive schedule must
start at a controlling value at an input.

Consequence: Recursive SCC decomposition obtained by
injecting all possible controlling values will find all possible
constructive schedules.



Intuition

SCC

1

If every such external input was set to 1 (all AND gates),
the SCC would have a fixed point of all ⊥.

Thus, at least one of these external inputs to 0. This
condition is necessary, but not sufficient.



Finding all schedules (step 1)
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Finding all schedules (step 2)
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Still cyclic: Deal with it later
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Finding all schedules (step 3)
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Finding all schedules (step 4)

We found two acyclic schedules and one cyclic schedule:
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The three inputs to this are x, z, and the output of gate c.

However, x=0 and z=0 were earlier found acyclic. And the
output of gate c is fixed at 1 since y=0.

We are done: we won’t get any other acyclic schedules
from this.



Merging Schedules (part 1)
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Merging Schedules (part 2)
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Second is same as before, just unrolled.



Merging Schedules (part 3)

Two choices:
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Merging Schedules (part 4)
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Merging Schedules (part 5)
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Schedule Comparison

Dumb: abcdeabcdeabcdeabcdeabcde = 25
Bourdoncle: b c d e a b c d e = 9
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Simplifying the circuit

The second one,
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is definitely smaller (seven gates versus eight).

What values should the b′ and c′ inputs take?

Knaster/Tarski/Kleene/Cousot theorem says they should
be ⊥. But it’s difficult to build circuits that manipulate ⊥.

Can we do better?



Theorem

Formerly internal signals that have become inputs may be
set to either 0 or 1 without changing the function.

Proof. The least-fixed-point function F (i.e., the acyclic
circuit) is monotonic, and is guaranteed to be causal, i.e.,
the least fixed point never contains ⊥ values. Since F is
monotonic and ⊥ v X by definition, F (⊥) v F (X).
However, F (⊥) is the least fixed point and fully defined,
therefore we must have F (⊥) = F (X).

Consequence: We can greatly simplify the circuit.



Simplifying the Circuit
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Did we get it right?
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Conclusions

A procedure for building an acyclic circuit from a cyclic one

Can produce very compact circuits, especially after
simplification

Smaller than Malik or Bourdoncle

Basic idea: enumerate schedules, merge them

Potential problems: too many schedules, non-optimal
merging

What I haven’t shown you: (complex) details of the search
algorithm.


