
Compiling Esterel
into
Better Circuits
and
Faster Simulations

Stephen A. Edwards

Department of Computer Science,
Columbia University

www.cs.columbia.edu/˜sedwards

sedwards@cs.columbia.edu

Esterel for Hardware Specification

Why consider Esterel?

• Semantics more abstract than RTL

More succinct descriptions faster and easier to write

• High-level semantics enable high-level optimizations

State assignment a hierarchical problem

• High-level semantics enable more efficient simulation

Semantics are more like an imperative program

• Esterel’s semantics are deterministic

Simulation-synthesis mismatches eliminated

Applications of Esterel

Systems with complex (non-pipelined) control-behavior:

• DMA controllers

• Cache controllers

• Communication protocols

(Not processors)

Verilog More Verbose Than Esterel

case (cur_state) // synopsys parallel_case
IDLE: begin

if (pcsu_powerdown & !jmp_e &
!valid_diag_window) begin

next_state = STANDBY_PWR_DN;
end
else if (valid_diag_window | ibuf_full |

jmp_e) begin
next_state = cur_state;
end
else if(icu_miss&!cacheable) begin
next_state = NC_REQ_STATE ;
end
else if (icu_miss&cacheable) begin
next_state = REQ_STATE;
end
else next_state = cur_state ;

end

NC_REQ_STATE: begin
if(normal_ack| error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE: begin
if (normal_ack) begin
next_state = FILL_2ND_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_2ND_WD: begin
if(normal_ack) begin
next_state = REQ_STATE2;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE2: begin
if(normal_ack) begin
next_state = FILL_4TH_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_4TH_WD: begin
if(normal_ack| error_ack) begin
next_state = IDLE;
end
else next_state = cur_state ;

end

STANDBY_PWR_DN: begin
if(!pcsu_powerdown | jmp_e) begin
next_state = IDLE;
end
else next_state = STANDBY_PWR_DN;

end

default: next_state = 7’bx;

endcase

loop
await
case [icu_miss and

not cacheable] do
await [normal_ack or error_ack]

end
case [icu_miss and

cacheable] do
abort
await 4 normal_ack;

when error_ack
end
case [pcsu_powerdown and

not jmp_e and
not valid_diag_window] do

await [pcsu_powerdown and
not jmp_e]

end
end;
pause

end

Why is Esterel More Succinct?

Verilog:

REQ_STATE2: begin
if(normal_ack) begin
next_state = FILL_4TH_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state;

end

Esterel:

abort
await normal_ack

when error_ack

• Esterel provides cross-clock control-flow

• State machine logic represented implicitly

• Higher-level constructs like await

Generating Fast Circuits

Basic Circuit Generation

loop
emit A; await C;
emit B; pause

end

A

C
B

entry

A

C

B

Basic Circuit Generation

Berry’s technique [1992] works, but is fairly inefficient:

• Many combinational redundancies. E.g., A B

C D

present A then emit B end;

present C then emit D end

produces two redundant OR gates

• Many sequential redundancies

One flop per pause can be very wasteful

Touati, Toma, Sentovich, and Berry [1993–1997]
proposed techniques to eliminate many, but requires
reachable state space and only works on circuit.

Generating Fast Circuits

Esterel’s semantics match hardware. Translation is
straightforward.

Nice feature: state space is well-defined and hierarchical
(e.g., due to abort and concurrency).

Enables a hierarchical state assignment/synthesis
procedure.

Translation to CCFG

every S do
loop

await I;
weak abort

sustain R
when immediate A;
emit O

end
||

loop
pause; pause;
present R then

emit A
end

end
end

S

s2 s3

I

R

R A A

1 1 2

O s3=1 s3=2

s2=0 s2=0

s2=1 s2=2 s2=1 s3=1

Translation to PDG
S

s2 s3

I

R

R A A

1 1 2

O s3=1 s3=2

s2=0 s2=0

s2=1 s2=2 s2=1 s3=1

S

s2=1 s3=1

s2 s3

s2=0 I s3=2

s2=1 R s3=1

A

R 1 A

1 2 s2=2

O s2=0

Translation to Circuitry

S

s2=1 s3=1

s2 s3

s2=0 I s3=2

s2=1 R s3=1

A

R 1 A

1 2 s2=2

O s2=0

s2=1 s3=1

s2=0 s3=2

s2=1 s3=1

A

R 1

1 2 s2=2

O s2=0

A State Assignment Example
abort

[
await A; await B

||
await C

]
when D;
emit E;
pause;
[

await F
||

await G
]

Hierarchical States

abort
[

await A; await B
||

await C
]

when D;
emit E;

pause;

[
await F

||
await G

]

Five Simple FSMs

A B end

C end

pause

F end

G end

end

abort
[

await A; await B
||

await C
]

when D;
emit E;
pause;
[
await F

||
await G

]

Five Simple FSMs

A B end

C end

pause

F end

G end

end

Obvious questions:

• How should each state machine be encoded?

• Should state be shared between the AB/F and C/G
machines?

General Problem Statement

States in an Esterel program an arbitrary tree of
sequential and parallel state machines.

A B end C end

pause

F end G end

end

Choosing an Encoding
s1 Decision

D

�Fork (fan-out)

s2

A

s2 s2

B

s2 s2

s2

s3

C

s3 s3 Assignment

s3

s1

s1

�

s4

F

s4 s4

s4

s5

G

s5 s5

s5

s1

• How should s1,. . . ,s4 be encoded?

• Should s2 or s3 be shared with s4 or s5?

Choosing a Good Encoding

Goal: The smallest circuit that meets a timing constraint

1. Start with largest, fastest circuit (one-hot, no sharing)

2. Estimate the slack at each state decision point by
estimating how much the delay could be increased at
that point while still meeting the timing requirement

3. Attempt to share states at the lowest decision point
with the largest slack or reencode the widest-fanout
decision point with sufficient slack.

4. Repeat steps 2–3 until no further gain possible

Simulating Esterel

Automata Compilers

Esterel is a finite-state language, so build an automata:

loop
emit A; await C;
emit B; pause

end

switch (s) {
case 0: A = 1; s = 1; break;
case 1: if (C) { B = 1; s = 0; } break;
}

V1, V2, V3 (INRIA/CMA) [Berry, Gonthier 1992]

Fastest known code; great for programs with few states.

Does not scale; concurrency causes state explosion.

Netlist-based Compilers

loop
emit A; await C;
emit B; pause

end

entry

A

C

B

A = entry || s2q;

cf = !C && s1q;

s1d = cf || A;

B = s2d = C && s1q;

Clean semantics,
scales well, but
inefficient.

Can be 100 times
slower than automata
code.

Discrete-Event Based Compilers

SAXO-RT [Weil et al. 2000] Divides Esterel program into
event functions dispatched by a fixed scheduler.

loop
emit A; await C;
emit B; pause

end

unsigned curr = 0x1;
unsigned next = 0;

static void f1() {
A = 1;
curr &= ˜0x1; next |= 0x2;

}

static void f2() {
if (!C) return;
B = 1;
curr &= ˜0x2; next |= 0x1;

}

void tick() {
if (curr & 0x1) f1();
if (curr & 0x2) f2();
curr |= next;
next = 0;

}

Generating Fast Simulations

My Previous Technique

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C

D

s=2 s=1

R

1 s 2

A
B

t=0 t=1

B
C

0 t 1

C
D

s=2 s=1

if ((s0 & 3) == 1) {

if (S) {

s3 = 1; s2 = 1; s1 = 1;

} else

if (s1 >> 1)

s1 = 3;

else {

if ((s3 & 3) == 1) {

s3 = 2; t3 = L1;

} else {

t3 = L2;

}

Esterel Concurrent Sequential C code

Source CFG CFG

My Previous Technique

1. Translate Esterel into a concurrent control-flow graph

2. Analyze static data dependencies

3. Schedule

4. Generate sequential control-flow graph by inserting
context-switching code

5. Translate to C

Comments on Previous Technique

Much more efficient (can be 100×) than netlist simulation.

Currently used within Synopsys’ CoCentric System Studio
for control-code generation.

Context-switching idea powerful, but does not have much
insight into program behavior.

Adheres too closely to control dependencies; many more
opportunities to reorder code and simplify scheduling.

New Technique

1. Translate Esterel into a concurrent control-flow graph

2. Transform into Program Dependence Graph

3. Analyze static data dependencies

4. Insert control predicates to enable scheduling

5. Schedule

6. Generate sequential control-flow graph

7. Translate to C

A Code-Generation Example

loop
await A;
emit B;
present C then

emit D end;
present E then

emit F end;
pause

end
||

loop
present B then

emit C end;
pause

end

s

A

B B

C C

D

E

F

1 2

2 1

Concurrent Control-Flow and the
PDG

s

A

B B

C C

D

E

F

1 2

2 1 s B

A C

1

2 B C E

D F

2 1

Splitting the PDG for Scheduling

s B

A C

1

2 B C E

D F

2 1
s B f

A C C

1 D

2 B f E

F

2 1

Generating Code

s B f

A C C

1 D

2 B f E

F

2 1

f = 0;

if (s1 == 1 && A) {

s1 = 2;

B = 1;

f = 1;

if (E) F = 1;

} else {

s1 = 1;

}

if (B) C = 1;

if (f && C) D = 1;

