
High Level Synthesis from the
Synchronous Language Esterel 1068.003

Raising the level of abstraction above RTL

Prof. Stephen A. Edwards

Students: Cristian Soviani, Jia Zeng (2007?)

Mike Kishinevsky, Intel

We intend to make Esterel a viable hardware
description language for control-dominated
systems by developing a compiler that produces
optimized circuits from it.

High-level Synthesis from the Synchronous Language Esterel – p. 1/??

Verilog More Verbose Than Esterel

case (cur_state) // synopsys parallel_case
IDLE: begin

if (pcsu_powerdown & !jmp_e &
!valid_diag_window) begin

next_state = STANDBY_PWR_DN;
end
else if (valid_diag_window | ibuf_full |

jmp_e) begin
next_state = cur_state;
end
else if(icu_miss&!cacheable) begin
next_state = NC_REQ_STATE ;
end
else if (icu_miss&cacheable) begin
next_state = REQ_STATE;
end
else next_state = cur_state ;

end

NC_REQ_STATE: begin
if(normal_ack| error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE: begin
if (normal_ack) begin
next_state = FILL_2ND_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_2ND_WD: begin
if(normal_ack) begin
next_state = REQ_STATE2;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE2: begin
if(normal_ack) begin
next_state = FILL_4TH_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_4TH_WD: begin
if(normal_ack| error_ack) begin
next_state = IDLE;
end
else next_state = cur_state ;

end

STANDBY_PWR_DN: begin
if(!pcsu_powerdown | jmp_e) begin
next_state = IDLE;
end
else next_state = STANDBY_PWR_DN;

end

default: next_state = 7’bx;

endcase

loop
await

case [icu_miss and
not cacheable] do

await [normal_ack or error_ack]
end
case [icu_miss and

cacheable] do
abort

await 4 normal_ack;
when error_ack

end
case [pcsu_powerdown and

not jmp_e and
not valid_diag_window] do

await [pcsu_powerdown and
not jmp_e]

end
end;
pause

end

High-level Synthesis from the Synchronous Language Esterel – p. 2/??

Why is Esterel More Succinct?

Verilog:
REQ_STATE2: begin

if(normal_ack) begin
next_state = FILL_4TH_WD;

end
else if (error_ack) begin

next_state = IDLE ;
end
else next_state = cur_state;

end

Esterel:
abort

await normal_ack
when error_ack

Esterel provides cross-clock control-flow

State machine logic represented implicitly

Higher-level constructs like await

High-level Synthesis from the Synchronous Language Esterel – p. 3/??

An Overview of Esterel

Synchronous model of time: implicit global clock

Communication through wire-like signals

Two flavors of statement:

Combinational

Execute in one cycle

emit
present / if
loop

Sequential

Take multiple cycles

pause
await
sustain

High-level Synthesis from the Synchronous Language Esterel – p. 4/??

Basic Circuit Generation

loop
emit A; await C;
emit B; pause

end

A

C
B

entry

A

C

B

High-level Synthesis from the Synchronous Language Esterel – p. 5/??

Basic Circuit Generation

Berry’s technique [1992] works, but is fairly
inefficient:

Many combinational redundancies. E.g., A B

C D

present A then emit B end;
present C then emit D end
produces two redundant OR gates

Many sequential redundancies
One flop per pause can be very wasteful
Touati, Toma, Sentovich, and Berry
[1993–1997] proposed techniques to
eliminate many, but requires reachable state
space and only works on circuit.

High-level Synthesis from the Synchronous Language Esterel – p. 6/??

Generating Fast Circuits

Esterel’s semantics match hardware. Translation
is straightforward.

Nice feature: state space is well-defined and
hierarchical (e.g., due to abort and concurrency).

Enables a hierarchical state
assignment/synthesis procedure.

High-level Synthesis from the Synchronous Language Esterel – p. 7/??

A State Assignment Example

abort
[

await A; await B
||

await C
]

when D;
emit E;
pause;
[
await F

||
await G

]

High-level Synthesis from the Synchronous Language Esterel – p. 8/??

Hierarchical States

abort
[

await A; await B
||

await C
]

when D;
emit E;

pause;

[
await F

||
await G

]

High-level Synthesis from the Synchronous Language Esterel – p. 9/??

Five Simple FSMs

A B end

C end

pause

F end

G end

end

abort
[

await A; await B
||

await C
]

when D;
emit E;
pause;
[

await F
||

await G
]

High-level Synthesis from the Synchronous Language Esterel – p. 10/??

Encoding Experiment

What does it take to select a good encoding?

Compared expensive automatic flow

V5 → SIS with sequential optimization

to human cleverness

CEC → manual encoding → SIS (combinational)

High-level Synthesis from the Synchronous Language Esterel – p. 11/??

Discoveries

Many local optimizations possible

Matching SIS required knowing some state
reachability

Really need a combination of both for quality
results

High-level Synthesis from the Synchronous Language Esterel – p. 12/??

Local Redundancy

Locally redundant
constructs:

pause;
sustain S

equivalent to

loop
pause;
emit S

end loop

S=1

S=1

S=1

High-level Synthesis from the Synchronous Language Esterel – p. 13/??

Simple Sequential Don’t-Cares

loop

await ConflictOnSEL;

do

every immediate SEL do

emit RejectSEL

end

watching AcceptSEL

end loop

BOOT

C

C’

A

A’

C

C’

A

A’

BOOT

X=1 X=1

seq d/c : BOOT => C’

C = ConflictOnSEL

A = AcceptSEL

Needed to know that ConflictOnSEL was never
present in the first cycle.

High-level Synthesis from the Synchronous Language Esterel – p. 14/??

Equivalent States, Redundant Logic

BOOT

IDLE

4ADDR
SEL
WRITE

DMARDxx

DMAWRITExx

2
2

Decoders

selection cycle

High-level Synthesis from the Synchronous Language Esterel – p. 15/??

Machines running in lock-step

R

W WB

R
R

B

B

W

W
W

W

R

Moore machine

(asserts time critical POs)

W

G

R, B, G, W " control signals

G

W

This generated many sequential don’t-cares that
were slowing the logic.

High-level Synthesis from the Synchronous Language Esterel – p. 16/??

Sequential Redundancy

Signal emitted in a cycle where it is never tested.

R

W
W

B

B

W

R
?

?

?

?

?

?

W

G pLcaDrives : B
pPamDrives : R

pHostDrives : W

pRomDrives : G

% during first cycle :
% * start sustaining pWREQ: on the next cycle, we
% shall have WREQ and DMA address ready cycle after
% * prepare Lca drive for next cycle

emit pLcaDrives;
await tick;
% setup data path from pam to host
emit pPamDrives;
% ...
emit pHostDrives;

High-level Synthesis from the Synchronous Language Esterel – p. 17/??

Results

example size method levels LUTs latches
graycounter 91 V5 + blifopt 5 66 27

manual 4 51 17
abcdef 142 V5 + blifopt 5 114 25

manual 3 128 8
mem-ctrl 80 V5 + blifopt 3 24 16

CEC + comb 3 52 17
CEC + blifopt 3 27 15
manual 2 31 13
Original VHDL 2 17 11

mem-ctrl2 36 V5 + blifopt 2 17 8
CEC + comb 2 23 9
CEC + blifopt 2 18 8
manual 2 14 3
JEDI + comb 2 14 3

tcint 689 V5 + blifopt 5 93 52
manual 3 118 52

High-level Synthesis from the Synchronous Language Esterel – p. 18/??

Shannon Decomp. for Retiming

i0

i1

i2

i3

o0

o1

o2

o3

8

8

8

8

10

10

10

10

High-level Synthesis from the Synchronous Language Esterel – p. 19/??

Shannon Decomposition

i0

i1

i2

i3

o0

o1

o2

o3

8

8

8

8

0

1

0

1

0

1

0

1

0

1

0

1

10

10

10

10

High-level Synthesis from the Synchronous Language Esterel – p. 20/??

After Retiming

i0

i1

i2

i3

o0

o1

o2

o3

8

8

8

8

0

1

0

1

0

1

0

1

0

1

0

1

10

10

10

10

High-level Synthesis from the Synchronous Language Esterel – p. 21/??

More aggressive decomposition

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0
1

o10

1

10

o20
1

10

o30
1

10

0

1

1
0

o0
10

i0
8

i1
8

i2
8

i3
8

High-level Synthesis from the Synchronous Language Esterel – p. 22/??

“Tech mapping” Shannon

A

B

C

X B

C

A0
A1

A2

X0
X1

X2

A

B

C

0

1

X0
X1

X2
B

C

0

1

X0
X1

X2
A0
A1

A2
X4

X3

f

start start

extend

f
1

f
1

f
0

High-level Synthesis from the Synchronous Language Esterel – p. 23/??

“Tech mapping” Shannon

B

C
B
C

A0
A1

A2
A0
A1

A20

1 0

1X
X

f f’sh sh

High-level Synthesis from the Synchronous Language Esterel – p. 24/??

Overall Algorithm

Registers become nodes with −p delay
(negative clock period)

Compute “complex” arrival times for variants
at each node.

Bellman-Ford relaxation algorithm on the
cyclic graph.
Number of variants pruned aggressively.

Reconstruct the circuit: choose variant(s) of
each node that satisfies these arrival times.

Run normal retiming.

High-level Synthesis from the Synchronous Language Esterel – p. 25/??

Delay/area tradeoff: 128-bit adder

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300

D
el

ay
 (

~
le

ve
ls

)

Area (~literals)

Fast: 24s to compute 120 points (88s incl. SIS)

High-level Synthesis from the Synchronous Language Esterel – p. 26/??

ISCAS benchmark results

reference retimed Sh. + ret. time speed-up
period area period area period area (s)

s510 8 184 8 203 8 203 0.4
s641 11 115 10 147 8 210 0.9 25%
s713 11 118 10 150 9 212 0.7 11%
s820 7 206 7 258 7 258 0.3
s832 7 217 6 235 6 234 0.3
s838 10 154 11 235 8 373 1.9 25%
s1196 9 265 9 443 9 444 0.4
s1423 24 498 19 559 13 846 3.6 46%
s1488 6 453 6 485 6 484 0.5
s1494 6 456 6 488 6 487 0.5
s9234 11 662 9 851 7 1037 5.4 28%

High-level Synthesis from the Synchronous Language Esterel – p. 27/??

Deliverables

The Columbia Esterel Compiler

http://www1.cs.columbia.edu/˜sedwards/cec/

V5-compliant open-source Esterel compiler

Backends for C, Verilog, BLIF, and VHDL

Written in C++

Source and Linux binaries available

High-level Synthesis from the Synchronous Language Esterel – p. 28/??

Last Year’s Accomplishments

LCTES paper on software backend

IWLS paper on state-encoding experiments
(submitted)

IWLS paper on Shannon for Retiming
(submitted)

SLAP paper on SHIM language for
hardware/software codesign

IWLS paper on hardware synthesis from C

LCTES paper on language for device drivers

High-level Synthesis from the Synchronous Language Esterel – p. 29/??

Next Year’s Goals

Shannon/Retiming flow on higher-level
models

Improved Shannon area synthesis

Peephole state optimization algorithm

Global, approximate reachability algorithm

High-level Synthesis from the Synchronous Language Esterel – p. 30/??

Publications 1

Stephen A. Edwards.
SHIM: A Language for Hardware/Software Integration.
In Proceedings of Synchronous Languages, Applications, and
Programming (SLAP), Edinburgh, Scotland, April 2005.

Stephen A. Edwards.
The challenges of hardware synthesis from C-like langauges.
In Proceedings of Design Automation and Test in Europe
(DATE), Munich, Germany, March 2005.

Jia Zeng, Cristian Soviani, and Stephen A. Edwards.
Generating Fast Code from Concurrent Program Dependence
Graphs.
In Proceedings of the ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems
(LCTES), Washington, DC, June 2004.

High-level Synthesis from the Synchronous Language Esterel – p. 31/??

Publications 2

Stephen A. Edwards, Vimal Kapadia, and Michael Halas.
Compiling Esterel into Static Discrete-Event Code.
In Proceedings of Synchronous Languages, Applications, and
Programming (SLAP 2004). Barcelona, Spain, March 28, 2004.

Stephen A. Edwards.
Making Cyclic Circuits Acyclic.
In Proceedings of the 40th Design Automation Conference (DAC
2003). Anaheim, California, June 2-6, 2003. pp. 159-162.

Stephen A. Edwards.
Compiling Concurrent Languages for Sequential Processors.
ACM Transactions on Design Automation of Electronic Systems
(TODAES) 8(2):141-187, April 2003.

High-level Synthesis from the Synchronous Language Esterel – p. 32/??

	�egin {tabular}[t]{@{}l@{}}High Level Synthesis from the\ Synchronous Language Esterel {�ootnotesize 1068.003}end {tabular}
	Verilog More Verbose Than Esterel
	Why is Esterel More Succinct?
	An Overview of Esterel
	Basic Circuit Generation
	Basic Circuit Generation
	Generating Fast Circuits
	A State Assignment Example
	Hierarchical States
	Five Simple FSMs
	Encoding Experiment
	Discoveries
	Local Redundancy
	Simple Sequential Don't-Cares
	Equivalent States, Redundant Logic
	Machines running in lock-step
	Sequential Redundancy
	Results
	Shannon Decomp. for Retiming
	Shannon Decomposition
	After Retiming
	More aggressive decomposition
	``Tech mapping'' Shannon
	``Tech mapping'' Shannon
	Overall Algorithm
	Delay/area tradeoff: 128-bit adder
	ISCAS benchmark results
	Deliverables
	Last Year's Accomplishments
	Next Year's Goals
	Publications 1
	Publications 2

