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We intend to make Esterel a viable hardware
description language for control-dominated
systems by developing a compiler that produces
optimized circuits from it.
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Verilog More Verbose Than Esterel

case (cur_state) // synopsys parallel_case
IDLE: begin

if (pcsu_powerdown & !jmp_e &
!valid_diag_window) begin

next_state = STANDBY_PWR_DN;
end
else if (valid_diag_window | ibuf_full |

jmp_e) begin
next_state = cur_state;
end
else if(icu_miss&!cacheable) begin
next_state = NC_REQ_STATE ;
end
else if (icu_miss&cacheable) begin
next_state = REQ_STATE;
end
else next_state = cur_state ;

end

NC_REQ_STATE: begin
if(normal_ack| error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE: begin
if (normal_ack) begin
next_state = FILL_2ND_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_2ND_WD: begin
if(normal_ack) begin
next_state = REQ_STATE2;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE2: begin
if(normal_ack) begin
next_state = FILL_4TH_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_4TH_WD: begin
if(normal_ack| error_ack) begin
next_state = IDLE;
end
else next_state = cur_state ;

end

STANDBY_PWR_DN: begin
if(!pcsu_powerdown | jmp_e ) begin
next_state = IDLE;
end
else next_state = STANDBY_PWR_DN;

end

default: next_state = 7’bx;

endcase

loop
await

case [icu_miss and
not cacheable] do

await [normal_ack or error_ack]
end
case [icu_miss and

cacheable] do
abort

await 4 normal_ack;
when error_ack

end
case [pcsu_powerdown and

not jmp_e and
not valid_diag_window] do

await [pcsu_powerdown and
not jmp_e]

end
end;
pause

end
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Why is Esterel More Succinct?

Verilog:
REQ_STATE2: begin

if(normal_ack) begin
next_state = FILL_4TH_WD;

end
else if (error_ack) begin

next_state = IDLE ;
end
else next_state = cur_state;

end

Esterel:
abort

await normal_ack
when error_ack

Esterel provides cross-clock control-flow

State machine logic represented implicitly

Higher-level constructs like await
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An Overview of Esterel

Synchronous model of time: implicit global clock

Communication through wire-like signals

Two flavors of statement:

Combinational

Execute in one cycle

emit
present / if
loop

Sequential

Take multiple cycles

pause
await
sustain
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Basic Circuit Generation

loop
emit A; await C;
emit B; pause

end

A

C
B

entry

A

C

B

High-level Synthesis from the Synchronous Language Esterel – p. 5/??



Basic Circuit Generation

Berry’s technique [1992] works, but is fairly
inefficient:

Many combinational redundancies. E.g., A B

C D

present A then emit B end;
present C then emit D end
produces two redundant OR gates

Many sequential redundancies
One flop per pause can be very wasteful
Touati, Toma, Sentovich, and Berry
[1993–1997] proposed techniques to
eliminate many, but requires reachable state
space and only works on circuit.
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Generating Fast Circuits

Esterel’s semantics match hardware. Translation
is straightforward.

Nice feature: state space is well-defined and
hierarchical (e.g., due to abort and concurrency).

Enables a hierarchical state
assignment/synthesis procedure.
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A State Assignment Example

abort
[

await A; await B
||

await C
]

when D;
emit E;
pause;
[
await F

||
await G

]
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Hierarchical States

abort
[

await A; await B
||

await C
]

when D;
emit E;

pause;

[
await F

||
await G

]
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Five Simple FSMs

A B end

C end

pause

F end

G end

end

abort
[

await A; await B
||

await C
]

when D;
emit E;
pause;
[

await F
||

await G
]
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Encoding Experiment

What does it take to select a good encoding?

Compared expensive automatic flow

V5 → SIS with sequential optimization

to human cleverness

CEC → manual encoding → SIS (combinational)
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Discoveries

Many local optimizations possible

Matching SIS required knowing some state
reachability

Really need a combination of both for quality
results
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Local Redundancy

Locally redundant
constructs:

pause;
sustain S

equivalent to

loop
pause;
emit S

end loop

S=1

S=1

S=1
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Simple Sequential Don’t-Cares

loop

await ConflictOnSEL;

do

every immediate SEL do

emit RejectSEL

end

watching AcceptSEL

end loop

BOOT

C

C’

A

A’

C

C’

A

A’

BOOT

X=1 X=1

seq d/c : BOOT => C’

C = ConflictOnSEL

A = AcceptSEL

Needed to know that ConflictOnSEL was never
present in the first cycle.
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Equivalent States, Redundant Logic

BOOT

IDLE

4ADDR
SEL
WRITE

DMARDxx

DMAWRITExx

2
2

Decoders

selection cycle
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Machines running in lock-step

R

W WB

R
R

B

B

W

W
W

W

R

Moore machine

(asserts time critical POs)

W

G

R, B, G, W " control signals

G

W

This generated many sequential don’t-cares that
were slowing the logic.
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Sequential Redundancy

Signal emitted in a cycle where it is never tested.

R

W
W

B

B

W

R
?

?

?

?

?

?

W

G pLcaDrives : B
pPamDrives : R

pHostDrives : W

pRomDrives : G

% during first cycle :
% * start sustaining pWREQ: on the next cycle, we
% shall have WREQ and DMA address ready cycle after
% * prepare Lca drive for next cycle

emit pLcaDrives;
await tick;
% setup data path from pam to host
emit pPamDrives;
% ...
emit pHostDrives;
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Results

example size method levels LUTs latches
graycounter 91 V5 + blifopt 5 66 27

manual 4 51 17
abcdef 142 V5 + blifopt 5 114 25

manual 3 128 8
mem-ctrl 80 V5 + blifopt 3 24 16

CEC + comb 3 52 17
CEC + blifopt 3 27 15
manual 2 31 13
Original VHDL 2 17 11

mem-ctrl2 36 V5 + blifopt 2 17 8
CEC + comb 2 23 9
CEC + blifopt 2 18 8
manual 2 14 3
JEDI + comb 2 14 3

tcint 689 V5 + blifopt 5 93 52
manual 3 118 52
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Shannon Decomp. for Retiming
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Shannon Decomposition
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After Retiming
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More aggressive decomposition
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“Tech mapping” Shannon
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“Tech mapping” Shannon
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Overall Algorithm

Registers become nodes with −p delay
(negative clock period)

Compute “complex” arrival times for variants
at each node.

Bellman-Ford relaxation algorithm on the
cyclic graph.
Number of variants pruned aggressively.

Reconstruct the circuit: choose variant(s) of
each node that satisfies these arrival times.

Run normal retiming.
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Delay/area tradeoff: 128-bit adder
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Fast: 24s to compute 120 points (88s incl. SIS)
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ISCAS benchmark results

reference retimed Sh. + ret. time speed-up
period area period area period area (s)

s510 8 184 8 203 8 203 0.4
s641 11 115 10 147 8 210 0.9 25%
s713 11 118 10 150 9 212 0.7 11%
s820 7 206 7 258 7 258 0.3
s832 7 217 6 235 6 234 0.3
s838 10 154 11 235 8 373 1.9 25%
s1196 9 265 9 443 9 444 0.4
s1423 24 498 19 559 13 846 3.6 46%
s1488 6 453 6 485 6 484 0.5
s1494 6 456 6 488 6 487 0.5
s9234 11 662 9 851 7 1037 5.4 28%
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Deliverables

The Columbia Esterel Compiler

http://www1.cs.columbia.edu/˜sedwards/cec/

V5-compliant open-source Esterel compiler

Backends for C, Verilog, BLIF, and VHDL

Written in C++

Source and Linux binaries available

High-level Synthesis from the Synchronous Language Esterel – p. 28/??



Last Year’s Accomplishments

LCTES paper on software backend

IWLS paper on state-encoding experiments
(submitted)

IWLS paper on Shannon for Retiming
(submitted)

SLAP paper on SHIM language for
hardware/software codesign

IWLS paper on hardware synthesis from C

LCTES paper on language for device drivers
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Next Year’s Goals

Shannon/Retiming flow on higher-level
models

Improved Shannon area synthesis

Peephole state optimization algorithm

Global, approximate reachability algorithm
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