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We intend to make Esterel a viable hardware
description language for control-dominated
systems by developing a compiler that produces
optimized circuits from it.
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Motivation: Rising Design Cost

1981: 100 designer-months for leading-edge chip
10k transistors, 100 transistors/month

2002: 30 000 designer-months
150M transistors, 5000 transistors/month

Design cost increased from $1M to $300M
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Why Consider Esterel for Hardware?

Semantics more abstract than RTL

More succinct: easier to write faster

High-level semantics enable optimizations

State assignment a hierarchical problem

Semantics enable efficient simulation

No event queue

Closer to an imperative program

Esterel’s semantics are deterministic

Simulation-synthesis mismatches eliminated
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Applications of Esterel

Systems with complex (non-pipelined)
control-behavior:

DMA controllers

Cache controllers

Communication protocols

(Not processors)

High-level Synthesis from the Synchronous Language Esterel – p. 4/30



Verilog More Verbose Than Esterel

case (cur_state) // synopsys parallel_case
IDLE: begin

if (pcsu_powerdown & !jmp_e &
!valid_diag_window) begin

next_state = STANDBY_PWR_DN;
end
else if (valid_diag_window | ibuf_full |

jmp_e) begin
next_state = cur_state;
end
else if(icu_miss&!cacheable) begin
next_state = NC_REQ_STATE ;
end
else if (icu_miss&cacheable) begin
next_state = REQ_STATE;
end
else next_state = cur_state ;

end

NC_REQ_STATE: begin
if(normal_ack| error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE: begin
if (normal_ack) begin
next_state = FILL_2ND_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_2ND_WD: begin
if(normal_ack) begin
next_state = REQ_STATE2;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE2: begin
if(normal_ack) begin
next_state = FILL_4TH_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_4TH_WD: begin
if(normal_ack| error_ack) begin
next_state = IDLE;
end
else next_state = cur_state ;

end

STANDBY_PWR_DN: begin
if(!pcsu_powerdown | jmp_e ) begin
next_state = IDLE;
end
else next_state = STANDBY_PWR_DN;

end

default: next_state = 7’bx;

endcase

loop
await

case [icu_miss and
not cacheable] do

await [normal_ack or error_ack]
end
case [icu_miss and

cacheable] do
abort

await 4 normal_ack;
when error_ack

end
case [pcsu_powerdown and

not jmp_e and
not valid_diag_window] do

await [pcsu_powerdown and
not jmp_e]

end
end;
pause

end
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Why is Esterel More Succinct?

Verilog:
REQ_STATE2: begin

if(normal_ack) begin
next_state = FILL_4TH_WD;

end
else if (error_ack) begin

next_state = IDLE ;
end
else next_state = cur_state;

end

Esterel:
abort

await normal_ack
when error_ack

Esterel provides cross-clock control-flow

State machine logic represented implicitly

Higher-level constructs like await
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An Overview of Esterel

Synchronous model of time: implicit global clock

Communication through wire-like signals

Two flavors of statement:

Combinational

Execute in one cycle

emit
present / if
loop

Sequential

Take multiple cycles

pause
await
sustain
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An Example

emit B;
Force signal present in this cycle

present C then Make D present if C is
emit D end;
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An Example

await A;
Wait for next cycle where A is present

emit B;
present C then

emit D end;
pause

Wait for next cycle
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An Example

loop Infinite Loop
await A;
emit B;
present C then

emit D end;
pause

end
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An Example

loop
await A;
emit B;
present C then

emit D end;
pause

end
|| Run Concurrently

loop
present B then

emit C end;
pause

end
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An Example

every R do
Restart on Rloop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end
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An Example

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
|| Same-cycle bidirectional

communicationloop
present B then

emit C end;
pause

end
end
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An Example

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

Good for hierarchical FSMs

Bad at manipulating data

Esterel V7 variant proposed
to address this
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Basic Circuit Generation

loop
emit A; await C;
emit B; pause

end

A

C
B

entry

A

C

B
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Basic Circuit Generation

Berry’s technique [1992] works, but is fairly
inefficient:

Many combinational redundancies. E.g., A B

C D

present A then emit B end;
present C then emit D end
produces two redundant OR gates

Many sequential redundancies
One flop per pause can be very wasteful
Touati, Toma, Sentovich, and Berry
[1993–1997] proposed techniques to
eliminate many, but requires reachable state
space and only works on circuit.
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Generating Fast Circuits

Esterel’s semantics match hardware. Translation
is straightforward.

Nice feature: state space is well-defined and
hierarchical (e.g., due to abort and concurrency).

Enables a hierarchical state
assignment/synthesis procedure.
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A State Assignment Example

abort
[

await A; await B
||

await C
]

when D;
emit E;
pause;
[
await F

||
await G

]
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Hierarchical States

abort
[

await A; await B
||

await C
]

when D;
emit E;

pause;

[
await F

||
await G

]
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Five Simple FSMs

A B end

C end

pause

F end

G end

end

abort
[

await A; await B
||

await C
]

when D;
emit E;
pause;
[

await F
||

await G
]
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Five Simple FSMs

A B end

C end

pause

F end

G end

end

Obvious questions:

How should each state machine be encoded?

Should state be shared between the AB/F
and C/G machines?
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General Problem Statement

States in an Esterel program an arbitrary tree of
sequential and parallel state machines.

A B end C end

pause

F end G end

end
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Choosing an Encoding

s1 Decision

D

�Fork (fan-out)

s2

A

s2 s2

B

s2 s2

s2

s3

C

s3 s3
Assignment

s3

s1

s1

�

s4

F

s4 s4

s4

s5

G

s5 s5

s5

s1

How should s1,. . . ,s4 be encoded?

Should s2 or s3 be shared with s4 or s5?
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Choosing a Good Encoding

Goal: The smallest circuit meeting a timing
constraint

1. Start with large, fast circuit (one-hot, no
sharing)

2. Estimate the slack at each state decision
point by estimating how much the delay could
be increased at that point while still meeting
the timing requirement

3. Share states at the lowest decision point with
largest slack or reencode the widest-fanout
decision point with sufficient slack

4. Repeat steps 2–3 until no further gain
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Results

SIS Xilinx
Example Literals Latches Levels Slices Period (ns)

V5 CEC hand V5 CEC hand V5 CEC hand V5 CEC hand V5 CEC hand
Figure 1a 23 15 15 6 (0) 5 5 4 3 3 7 4 4 4.7 4.6 4.4
dacexample 41 23 22 7 (0) 5 5 5 3 3 10 5 5 6.2 6.0 5.5
jacky1 39 22 20 5 (0) 4 4 4 3 3 6 5 4 5.4 6.1 5.0
runner 218 145 144 30 (24) 20 20 11 10 10 56 36 35 10.6 8.4 8.1
greycounter 240 173 142 34 (6) 18 15 11 13 9 40 34 17 12.4 13.4 8.9
scheduler 519 380 74 (52) 55 8 8 80 66 11.3 8.9
servos 407 287 60 (16) 47 10 10 105 66 16.7 13.4
abcd 167 165 17 (0) 13 7 8 43 43 12.8 12.5
tcint 508 414 95 (14) 60 17 9 115 81 10.8 10.9

20% smaller, run at comparable speeds.
Not the final word.
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Deliverables

The Columbia Esterel Compiler

http://www1.cs.columbia.edu/˜sedwards/cec/

V5-compliant open-source Esterel compiler

Backends for C, Verilog, BLIF, and (soon) VHDL

Written in C++

Source and Linux binaries available
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Last Year’s Accomplishments

CEC hardware backend released

DATE paper on hardware backend (rejected)

CEC software backend released

SLAP 2004 paper on software backend

New software backend created (not released)

LCTES paper on new software backend
(submitted)

DAC 2003 paper on attacking cyclic circuits
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Next Year’s Goals

Release of second software backend

Release of VHDL backend

Automated state assignment algorithm

Publication on Esterel state assignment

Verification?

Software synthesis with timing constraints?
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