
High Level Synthesis from the
Synchronous Language Esterel 1068.003

Raising the level of abstraction above RTL

Prof. Stephen A. Edwards

Students: Cristian Soviani, Jia Zeng (2007?)

Mike Kishinevsky, Intel

(somebody from TI? Motorola?)

We intend to make Esterel a viable hardware
description language for control-dominated
systems by developing a compiler that produces
optimized circuits from it.

High-level Synthesis from the Synchronous Language Esterel – p. 1/30

Motivation: Rising Design Cost

1981: 100 designer-months for leading-edge chip
10k transistors, 100 transistors/month

2002: 30 000 designer-months
150M transistors, 5000 transistors/month

Design cost increased from $1M to $300M

1980 1985 1990 1995 2000 2005 2010

Transistors per chip

Transistors/designer-month

100

10k

1M

100M

10G

High-level Synthesis from the Synchronous Language Esterel – p. 2/30

Why Consider Esterel for Hardware?

Semantics more abstract than RTL

More succinct: easier to write faster

High-level semantics enable optimizations

State assignment a hierarchical problem

Semantics enable efficient simulation

No event queue

Closer to an imperative program

Esterel’s semantics are deterministic

Simulation-synthesis mismatches eliminated

High-level Synthesis from the Synchronous Language Esterel – p. 3/30

Applications of Esterel

Systems with complex (non-pipelined)
control-behavior:

DMA controllers

Cache controllers

Communication protocols

(Not processors)

High-level Synthesis from the Synchronous Language Esterel – p. 4/30

Verilog More Verbose Than Esterel

case (cur_state) // synopsys parallel_case
IDLE: begin

if (pcsu_powerdown & !jmp_e &
!valid_diag_window) begin

next_state = STANDBY_PWR_DN;
end
else if (valid_diag_window | ibuf_full |

jmp_e) begin
next_state = cur_state;
end
else if(icu_miss&!cacheable) begin
next_state = NC_REQ_STATE ;
end
else if (icu_miss&cacheable) begin
next_state = REQ_STATE;
end
else next_state = cur_state ;

end

NC_REQ_STATE: begin
if(normal_ack| error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE: begin
if (normal_ack) begin
next_state = FILL_2ND_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_2ND_WD: begin
if(normal_ack) begin
next_state = REQ_STATE2;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE2: begin
if(normal_ack) begin
next_state = FILL_4TH_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_4TH_WD: begin
if(normal_ack| error_ack) begin
next_state = IDLE;
end
else next_state = cur_state ;

end

STANDBY_PWR_DN: begin
if(!pcsu_powerdown | jmp_e) begin
next_state = IDLE;
end
else next_state = STANDBY_PWR_DN;

end

default: next_state = 7’bx;

endcase

loop
await

case [icu_miss and
not cacheable] do

await [normal_ack or error_ack]
end
case [icu_miss and

cacheable] do
abort

await 4 normal_ack;
when error_ack

end
case [pcsu_powerdown and

not jmp_e and
not valid_diag_window] do

await [pcsu_powerdown and
not jmp_e]

end
end;
pause

end

High-level Synthesis from the Synchronous Language Esterel – p. 5/30

Why is Esterel More Succinct?

Verilog:
REQ_STATE2: begin

if(normal_ack) begin
next_state = FILL_4TH_WD;

end
else if (error_ack) begin

next_state = IDLE ;
end
else next_state = cur_state;

end

Esterel:
abort

await normal_ack
when error_ack

Esterel provides cross-clock control-flow

State machine logic represented implicitly

Higher-level constructs like await

High-level Synthesis from the Synchronous Language Esterel – p. 6/30

An Overview of Esterel

Synchronous model of time: implicit global clock

Communication through wire-like signals

Two flavors of statement:

Combinational

Execute in one cycle

emit
present / if
loop

Sequential

Take multiple cycles

pause
await
sustain

High-level Synthesis from the Synchronous Language Esterel – p. 7/30

An Example

emit B;
Force signal present in this cycle

present C then Make D present if C is
emit D end;

High-level Synthesis from the Synchronous Language Esterel – p. 8/30

An Example

await A;
Wait for next cycle where A is present

emit B;
present C then

emit D end;
pause

Wait for next cycle

High-level Synthesis from the Synchronous Language Esterel – p. 9/30

An Example

loop Infinite Loop
await A;
emit B;
present C then

emit D end;
pause

end

High-level Synthesis from the Synchronous Language Esterel – p. 10/30

An Example

loop
await A;
emit B;
present C then

emit D end;
pause

end
|| Run Concurrently

loop
present B then

emit C end;
pause

end

High-level Synthesis from the Synchronous Language Esterel – p. 11/30

An Example

every R do
Restart on Rloop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

High-level Synthesis from the Synchronous Language Esterel – p. 12/30

An Example

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
|| Same-cycle bidirectional

communicationloop
present B then

emit C end;
pause

end
end

High-level Synthesis from the Synchronous Language Esterel – p. 13/30

An Example

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

Good for hierarchical FSMs

Bad at manipulating data

Esterel V7 variant proposed
to address this

High-level Synthesis from the Synchronous Language Esterel – p. 14/30

Basic Circuit Generation

loop
emit A; await C;
emit B; pause

end

A

C
B

entry

A

C

B

High-level Synthesis from the Synchronous Language Esterel – p. 15/30

Basic Circuit Generation

Berry’s technique [1992] works, but is fairly
inefficient:

Many combinational redundancies. E.g., A B

C D

present A then emit B end;
present C then emit D end
produces two redundant OR gates

Many sequential redundancies
One flop per pause can be very wasteful
Touati, Toma, Sentovich, and Berry
[1993–1997] proposed techniques to
eliminate many, but requires reachable state
space and only works on circuit.

High-level Synthesis from the Synchronous Language Esterel – p. 16/30

Generating Fast Circuits

Esterel’s semantics match hardware. Translation
is straightforward.

Nice feature: state space is well-defined and
hierarchical (e.g., due to abort and concurrency).

Enables a hierarchical state
assignment/synthesis procedure.

High-level Synthesis from the Synchronous Language Esterel – p. 17/30

A State Assignment Example

abort
[

await A; await B
||

await C
]

when D;
emit E;
pause;
[
await F

||
await G

]

High-level Synthesis from the Synchronous Language Esterel – p. 18/30

Hierarchical States

abort
[

await A; await B
||

await C
]

when D;
emit E;

pause;

[
await F

||
await G

]

High-level Synthesis from the Synchronous Language Esterel – p. 19/30

Five Simple FSMs

A B end

C end

pause

F end

G end

end

abort
[

await A; await B
||

await C
]

when D;
emit E;
pause;
[

await F
||

await G
]

High-level Synthesis from the Synchronous Language Esterel – p. 20/30

Five Simple FSMs

A B end

C end

pause

F end

G end

end

Obvious questions:

How should each state machine be encoded?

Should state be shared between the AB/F
and C/G machines?

High-level Synthesis from the Synchronous Language Esterel – p. 21/30

General Problem Statement

States in an Esterel program an arbitrary tree of
sequential and parallel state machines.

A B end C end

pause

F end G end

end

High-level Synthesis from the Synchronous Language Esterel – p. 22/30

Choosing an Encoding

s1 Decision

D

�Fork (fan-out)

s2

A

s2 s2

B

s2 s2

s2

s3

C

s3 s3
Assignment

s3

s1

s1

�

s4

F

s4 s4

s4

s5

G

s5 s5

s5

s1

How should s1,. . . ,s4 be encoded?

Should s2 or s3 be shared with s4 or s5?

High-level Synthesis from the Synchronous Language Esterel – p. 23/30

Choosing a Good Encoding

Goal: The smallest circuit meeting a timing
constraint

1. Start with large, fast circuit (one-hot, no
sharing)

2. Estimate the slack at each state decision
point by estimating how much the delay could
be increased at that point while still meeting
the timing requirement

3. Share states at the lowest decision point with
largest slack or reencode the widest-fanout
decision point with sufficient slack

4. Repeat steps 2–3 until no further gain
High-level Synthesis from the Synchronous Language Esterel – p. 24/30

Results

SIS Xilinx
Example Literals Latches Levels Slices Period (ns)

V5 CEC hand V5 CEC hand V5 CEC hand V5 CEC hand V5 CEC hand
Figure 1a 23 15 15 6 (0) 5 5 4 3 3 7 4 4 4.7 4.6 4.4
dacexample 41 23 22 7 (0) 5 5 5 3 3 10 5 5 6.2 6.0 5.5
jacky1 39 22 20 5 (0) 4 4 4 3 3 6 5 4 5.4 6.1 5.0
runner 218 145 144 30 (24) 20 20 11 10 10 56 36 35 10.6 8.4 8.1
greycounter 240 173 142 34 (6) 18 15 11 13 9 40 34 17 12.4 13.4 8.9
scheduler 519 380 74 (52) 55 8 8 80 66 11.3 8.9
servos 407 287 60 (16) 47 10 10 105 66 16.7 13.4
abcd 167 165 17 (0) 13 7 8 43 43 12.8 12.5
tcint 508 414 95 (14) 60 17 9 115 81 10.8 10.9

20% smaller, run at comparable speeds.
Not the final word.

High-level Synthesis from the Synchronous Language Esterel – p. 25/30

Deliverables

The Columbia Esterel Compiler

http://www1.cs.columbia.edu/˜sedwards/cec/

V5-compliant open-source Esterel compiler

Backends for C, Verilog, BLIF, and (soon) VHDL

Written in C++

Source and Linux binaries available

High-level Synthesis from the Synchronous Language Esterel – p. 26/30

Last Year’s Accomplishments

CEC hardware backend released

DATE paper on hardware backend (rejected)

CEC software backend released

SLAP 2004 paper on software backend

New software backend created (not released)

LCTES paper on new software backend
(submitted)

DAC 2003 paper on attacking cyclic circuits

High-level Synthesis from the Synchronous Language Esterel – p. 27/30

Next Year’s Goals

Release of second software backend

Release of VHDL backend

Automated state assignment algorithm

Publication on Esterel state assignment

Verification?

Software synthesis with timing constraints?

High-level Synthesis from the Synchronous Language Esterel – p. 28/30

Publications 1

Stephen A. Edwards, Vimal Kapadia, and Michael Halas.
Compiling Esterel into Static Discrete-Event Code.
In Proceedings of Synchronous Languages, Applications, and
Programming (SLAP 2004). Barcelona, Spain, March 28, 2004.

Stephen A. Edwards.
Making Cyclic Circuits Acyclic.
In Proceedings of the 40th Design Automation Conference (DAC
2003). Anaheim, California, June 2-6, 2003. pp. 159-162.

Stephen A. Edwards.
Compiling Concurrent Languages for Sequential Processors.
ACM Transactions on Design Automation of Electronic Systems
(TODAES) 8(2):141-187, April 2003.

High-level Synthesis from the Synchronous Language Esterel – p. 29/30

Publications 2

Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas
Halbwachs, Paul Le Guernic, and Robert de Simone.
The Synchronous Languages 12 Years Later.
Proceedings of the IEEE 91(1):64-83, January 2003.

Stephen A. Edwards.
High-level Synthesis from the Synchronous Language Esterel.
In Proceedings of the International Workshop of Logic and
Synthesis (IWLS). New Orleans, Louisiana, June, 2002.

Stephen A. Edwards.
ESUIF: An Open Esterel Compiler.
In Proceedings of Synchronous Languages, Applications, and
Programming (SLAP). Grenoble, France, April 13, 2002.

High-level Synthesis from the Synchronous Language Esterel – p. 30/30

	�egin {tabular}[t]{@{}l@{}}High Level Synthesis from the\ Synchronous Language Esterel {small 1068.003}end {tabular}
	Motivation: Rising Design Cost
	Why Consider Esterel for Hardware?
	Applications of Esterel
	Verilog More Verbose Than Esterel
	Why is Esterel More Succinct?
	An Overview of Esterel
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	Basic Circuit Generation
	Basic Circuit Generation
	Generating Fast Circuits
	A State Assignment Example
	Hierarchical States
	Five Simple FSMs
	Five Simple FSMs
	General Problem Statement
	Choosing an Encoding
	Choosing a Good Encoding
	Results
	Deliverables
	Last Year's Accomplishments
	Next Year's Goals
	Publications 1
	Publications 2

