
Research Areas

Embedded Systems

Computers masquerading as something else.

Casio Nokia 7110 Sony
Camera Browser Playstation 2
Watch Phone

Philips Philips
DVD Player TiVo Recorder

Long-Term Goal

Supplying tools that speed the development of embedded
systems.

Domain-Specific Languages

Little languages that fit the problem

More succinct description that are

1. Quicker to create

2. Easier to get right

More opportunities for optimization

General-purpose languages
hindered by undecidability

Domain-specific languages much
simpler

Real-time Languages: Esterel

Synchronous language developed by
Gérard Berry in France

Basic idea: use global clock for
synchronization in software

Challenge: How to combine
concurrency, synchronization, and
instantaneous communication

Esterel
Restart when

RESET present every RESET do

Infinite loop

loop

Wait for next cycle
with A present

await A;
emit B;
present C then

emit D
end;
pause

end
Run concurrently ||

loop

Same-cycle
bidirectional

communication

present B then
emit C

end;
pause

end
end

Esterel

Previous work:

• Compiler that speed up certain large programs 100×

• Has limitations (e.g., owned by former employer)

Current projects

• New compiler infrastructure designed for research

• Better circuits from Esterel programs (Jia Zheng)

• Faster code from PDGs (Cristian Soviani)

• An Esterel Virtual Machine interpreter for
small-footprint applications (Aruchunan Vaseekaran
and Tamara Blain)

Languages for Device Drivers

Device drivers are those pieces of
software that you absolutely need
that never seem to work

Big security/reliability hole: run in
Kernel mode

Responsible for 80% of all Windows crashes

Tedious, difficult-to-write

Ever more important as customized hardware proliferates

Best-to-date

Thibault, Marlet, and Consel

IEEE Transactions Software Engineering, 1999

Developed the Graphics Adaptor Language for writing
XFree86 video card drivers

Report GAL drivers are 1/9th the size of their C
counterparts

No performance penalty

GAL S3 Driver (fragment)
chipsets S3_911, S3_924; What driver supports

port svga index := 0x3d4; Write address, then data
port misc := 0x3cc, 0x3c2;

register ChipID := sva(0x30); Logical register

serial begin Access sequence for register
misc[3..2] <= (3,- , -, -, -) W;
seq(0x12) <=> (-, PLL1, -, -, -) R/W;

end;

identification begin Rules for identifying card
1: ChipID[7..4] =>

(0x8 => step 2, 0x9 => S3_928);
2: ChipID[1..0] =>

(0x1 => S3_911, 0x2 => S3_924);

Ongoing Work

Develop language for network card drivers under Linux
(Chris Conway)

Study many existing implementations (Noel Vega)

Develop prototype language, compiler

Explore challenge of porting to other OSes

Apply lessons to other classes of drivers

Domain-specific Languages for
Emerging Architectures

The sovereignty of the general-purpose processor is
ending.

Silicon is getting so cheap, we can “waste” it in
special-purpose applications:

• Digital Signal Processors

• Graphics pipelines in videogames

• Network Processors

Intel’s IXP1200 Network Processor

Intel IXP1200 Network Processor

PCI Unit

Intel¤
StrongARM*

Core

SRAM Unit

SDRAM Unit

Scratchpad
Memory
(4 Kbyte)

FBI Unit

Hash Unit

IX Bus
Interface

512 Byte
Mini-Dcache

8 Kbyte
Dcache16 Kbyte

Icache
Intel

StrongARM
SA-1 Core Write Buffer

Read Buffer

UART
GPIO

4 Timers
RTC

JTAG

Micro-
engine

4

Micro-
engine

5

Micro-
engine

6

Micro-
engine

1

Micro-
engine

2

Micro-
engine

3

32-bit bus

64-bit bus

32-bit bus

64-bit bus

32 SRAM
WRITE XFER

Registers

32 SDRAM
WRITE XFER

Registers

32 SRAM
READ XFER

Registers

32 SDRAM
READ XFER

Registers

64 A-Bank
GPRs

64 B-Bank
GPRs

Mux

Pipe Latch

Immediate Data

Pipe Latch

Mux Mux

Shifter

To/From SRAM To/From SDRAM

ALU

Pipe Latch

Mux

Really powerful, but nobody can program it.
StrongARM + 6 concurrent microengines

How to program these
architectures?

Most now programmed in assembly language.

Not practical for ever-growing system complexity

C isn’t going to cut it: these are not PDP-11s

We need new languages and compilers to go with them

Domain-specific languages and
compilers

Project just starting (with Al Aho)

Goal is to look at a variety of emerging architectures,
propose new languages for them, and devise optimizing
compilation algorithms

We hope to do for these different architectures what
FORTRAN did for general-purpose computers

Interested? Pester us.

Thank you

