The Specification and Execution of

H eter ogeneous Synchronous
Reactive Systems

Doctoral Qualifying Examination

Stephen Edwards

December 11th, 1995

Slide1

Example: Digital answering machine I

Tcl/Tk

Display C FSM

User - .
\ ‘ Line
Interface
Tcl/Tk .| Controller
Controller -
Buttons, /
Switches

Dataflo ASM

/)

Theproblem I

We want to describe large systems
using a variety of languages.

LISP Boolean
Network
Dataflow
FSMs
c
How to connect them?

Slide2

Two camps I

¢ Grand Unified Language

Trand ate everything into asingle language:

Boolean

C FSM
S Network

Dataflow LISP

Dialtone
Detector

DTMF
Decoder

Compressor

Decom-
pressor

e\ /

Memory

Digitized Phone Line

Slide3

(expensive) compilation

o Hierarchical Heterogeneity (used here)
Leave parts of the system abstract:

Interface styleimposed
L Communication style imposed

Sy

Arbitrary modul e contents

——

Slide4

My proposal I

Expected contributions:

o A mathematical framework for heterogeneously
specifying an important class of systems
(reactive) based on an existing communication
scheme (synchronous semantics).

o A set of execution schemes (schedulers) for these
specifications.

o An efficient implementation in an existing
multi-language environment (Ptolemy).

Hypothesis: Synchronous semantics can be made
heterogeneous and used effectively to describe
reactive systems.

Slide5

Scope: Reactive systems I

[Harel, Pnueli 85]
¢ Maintain an ongoing dialog with their
environment—Iisten, don’'t terminate
¢ When things happen as important as what happens
¢ Discrete-valued, time-varying
o Examples:

— Systemswith user interfaces
* Digital watches
*x CD players

— Real-time controllers

* Anti-lock braking systems
* Industria process controllers

Many currently designed with ad-hoc
techniques—difficult to do quickly and reliably

Slide7

Outline I

o Introduction and Mativation

o || Scope: Reactive Systems and Synchronous
Semantics

o My Specification Scheme and its
Mathematical Framework

o Execution Techniques

Work to Date and Future Work

Slide6

Synchronous semantics I

[Berry, Habwachs, Benveniste, et al]
Basicidea: I nstantaneous Computation

Induces a discrete mode of time:

Instants

I

= Time
¢ Rigorous: Synthesis, verification made easier.
Fewer states than asynchronous.

o Decomposable: Decomposes without affecting
behavior, expressiveness.

o Predictable: Deterministic concurrency.

o Buildable: Make system faster than environment.

Difficult to build systems with exact delays.

Slide8

Cyclesand zero delay I

-
-

A contradictory specification!
A fundamental problem with zero delay

Existing Schemes Proposed Scheme

check at compiletime check at runtime

slow compilation fast compilation
no heterogeneity allows heterogeneity

Argument: Checking should not be necessary for
compilation—it is a verification problem.

Slide9

My systems:
Networ k of communicating modules

M1 M3 — " M4

M6 ———>

M2

[
.

M7

e Synchronous: zero-time computation, instants
o Cycles permitted

o Exactly one module drives each “wire’

Each module computes afunction in each instant

Modulefunctions may change between instants

—>f0—>f1—> —» Jo—* 01—

Slide11

Outline I

o Introduction and Motivation

e Scope: Reactive Systems and Synchronous
Semantics

¢ (| My Specification Scheme and its
Mathematical Framework

Execution Techniques

Work to Date and Future Work

Slide 10

Wirevalues:

Finite complete partial orders

[Scott et al.]
A finite complete partial order (CPO): (S C, L)
e S Finite set of values
e C: binary relation (“approximates’) on S
— Transitive: xCyandy C zimpliesxC z

— Antisymmetric: xCyandy C ximpliesx=y

— Reflexive: XC x

e LS I Cxforalxe$S

1 \ J_/ 0 1|1><01><10><O|O

11 11 0oL 10
N

1CcCo1lC1 Pointwise extension

Slide 12

Modules:
Monotonic functions

A monotonic function f : S— Shas

xCy implies f(x) C f(y)

y—f>f(y)

>
X

Intuition: Well-behaved functions:
more in = more out,
“doesn’t change itsmind”

If f and g monotonic, sois fog.

Slide 13

Behavior in an instant:

The least fixed point

Why afixed point?

f(%)=X%

SN

System function Wire values at timet

(f = fgofro---0fp) (zero delay)

f°a>c S

(a,b,c) = (L,L,1)

fo(L, L, 1) (0,L,1)
£1(0, L, 1) (0,1, 1)
f2(0,1, 1) (0,1,0)
f2(f1(f0(0,1,0))) = (0,1,0)

Slide 15

Extending module functions I

The input and output to each module is the vector of
all wiresin the system.

However, amodule only examines itsinputs, only
modifies its outputs.

A—»
m ——»C
B—»
x= (A B, C, D E,..
: —l |
fm(X) = (A B, D, E,..

= Input and output domains are the same

Slide 14

Uniqueleast fixed point theorem I

[well-known]

Theorem: A monotonic function on afinite complete
partial order has a unique least fixed point.

1L C f(1) (definitionof L)
f(Ly © f(f(L) (f ismonotonic)
f(f(L) € f(F(f(L)

Behavior: least fixed point of a
monotonic function on afinite CPO
Implications:

e unique
o aways defined
e quickly computed

¢ heterogeneous
(only care about monotonicity)

Slide 16

Order-invariance theorem I

[Murthy, Edwards 95]

Theorem: Theleast fixed point isthe same for al
composition orders of these functions.

”ou

Proof. (technical) Consequence of “one wire,
driver” rule,

one

Implication: Behavior independent of module
evaluation order—optimizefor speed, code size, etc.

fiofyo fy faofoofy

Slide 17

Outline I

o Introduction and Mativation

e Scope: Reactive Systems and Synchronous
Semantics

My Specification Scheme and its
Mathematical Framework

¢ || Execution Techniques

o Work to Date and Future Work

Slide 19

Interfacing with other languages I

Original problem: Using multiplelanguages

One solution: Build a generic moduleinterface

Outside: Inside:

A dtrict Simple
monotonic ™7 ™ ™ ™ “functioncal”
function semantics

o Need acomplete partial order
Solution: Build aflat CPO:

0 X 2 / n
L
o Need amonotonic function

Solution: Make the foreign function strict:

I mplementation I

Problem: In each instant, find the least fixed point.

Solution: (followsfrom proof of fixed point theorem)
lEf(LHEf(f(L)C---CLFP=LFP="---

For each instant,

1. Start withall wiresat L
2. Evaluate all module functions (in some order)

3. If any change their outputs, repeat Step 2

Challenge: Reduce the number of function evaluations.

Order-invariance ensures same result for al orderings.

Slide 20

Other Execution Schemes I Execution Schemes Compared I

Esterel V3 Compiler: Tabular FSM

[Berry et al. 88] T
a 0
Recall resultsfrom atable at runtime. g % o m
@ 3. a8
explicit _ % =N m§ %’g
Esterel | exhaustive | FSM Ecxﬁgﬁleon 5 23S RNo g3
source | smulation | Table
'FI'aStl)\blear no | exp. | exp. | const.
Esterel V4 Compiler: Boolean Network Boolean
[Berry, Shiple, Malik et al. 94] Network no | exp. | poly. | poly.
Simulate a boolean network at run time.
Convergent
I implicit Jic lteration yes |O0A|y. poly. | poly.
Estere | syntactic | ¥°'C |(BDD-based)
—» boolean — boolean
source | trandation exhaustive
network | . _ network . I
simulation My Stheme No checking for contradications
Slide 21 Slide 22

Scheduling I Outline I

Possible objectives ¢ Introduction and Motivation

o Minimize execution time or code size
e Scope: Reactive Systems and Synchronous

Possible approaches Semantics
o Fully static scheduling
o My Specification Scheme and its

Determine evaluation order once at .
Mathematical Framework

compile-time.

o Fully dynamic scheduling o Execution Techniques
Determine evaluation order at run-time.

Possible techniques ||W0rk to Date and Future Work

o Clustering (e.g., [Buck 93])
¢ Weak Topological Ordering [Bourdoncle 93]

¢ Strong Component Decomposition
[Buhl et al. 93]

o Minimum feedback arc set (NP-complete)

Slide 23 Slide 24

Work to date '

o Proof of concept:

Wrote a compiler for synchronous language
Esterel with simpleminded scheduler

lines | 207 | 467| 619
V3 Compilation (m:s) 0:52 | 4:43 | 1557
My Compilation (m:s) || 0:02 | 0:03 0:03
V3 Executable (K) 870 | 3700 | 12200
My Executable (K) 64 80 96
V3 Execution Time () 28 4.8 6.6
My Execution Time () 2.3 26 3.2

e Foundation for future work:

A mathematical framework based on finite

complete partial orders and monotonic functions.

— unigue solution always exists

— can be evaluated different ways

Slide 25

Conclusion I

o A heterogeneous approach to reactive systems
based on synchronous semantics

o Expected contributions:

1. A mathematical framework for describing
reactive systems using synchronous semantics

2. A set of scheduling algorithmsfor efficient

execution

3. A practical implementation of these

¢ Proof-of-concept compiler created

o Mathematica framework created

Slide 27

Futurework I

o Extend and polish the mathematical framework
o Implement this scheme as a domain in Ptolemy

— Write a simple-minded reference scheduler
— Create primitive modules

— Devise foreign module interface(s)
o Work on scheduling schemes

— Find an exact algorithm for the optimal
schedule (probably NP-complete)

— Devise heuristicsfor approaching the optimum

Slide 26

