
Compiling Esterel
Stephen A. Edwards

Department of Computer Science
Columbia University

www.cs.columbia.edu/˜sedwards

Outline

Introduction to Esterel and Existing Compilers

My Earlier Compiler [DAC 2000, TransCAD 2002]

New Compiler: ESUIF (work in progress [SLAP 2002])

The Esterel Language

Developed by Gérard Berry starting 1983

Originally for robotics applications

Imperative, textual language

Synchronous model of time like that in digital circuits

Concurrent

An Example

emit B;

Force signal present in this cycle

present C then Make D present if C is
emit D end;

An Example

await A;

Wait for next cycle where A is present

emit B;
present C then

emit D end;
pause

Wait for next cycle

An Example

loop Infinite Loop
await A;
emit B;
present C then

emit D end;
pause

end

An Example

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
|| Run Concurrently

loop
present B then

emit C end;
pause

end
end

An Example

every R do

Restart on Rloop
await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

An Example

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
|| Same-cycle bidirectional communication

loop
present B then

emit C end;
pause

end
end

An Example

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

Good for hierarchical FSMs

Bad at manipulating data

Hardware Esterel variant
proposed to address this

Automata Compilers

Esterel is a finite-state language, so build an automata:

loop
emit A; await C;
emit B; pause

end

switch (s) {
case 0: A = 1; s = 1; break;
case 1: if (C) B = 1; s = 0; break;
}

V1, V2, V3 (INRIA/CMA) [Berry, Gonthier 1992]

Fastest known code; great for programs with few states.

Does not scale; concurrency causes state explosion.

Netlist-based Compilers

loop
emit A; await C;
emit B; pause

end

entry

A

C

B

A = entry || s2q;

cf = !C && s1q;

s1d = cf || A;

B = s2d = C && s1q;

Clean semantics,
scales well, but
inefficient.

Can be 100 times
slower than automata
code.

Other Esterel Compilers

Control-flow-graph based

My work: EC [DAC 2000, TransCAD 2002]

Produces very efficient code for acyclic programs only

Discrete-event based

SAXO-RT [Weil et al. 2000]

Produces very efficient code for acyclic programs only

Being improved at Esterel Technologies?

Both proprietary; unlikely to be released.

Neither currently copes with statically cyclic programs.

My Earlier Esterel Compiler
Presented at DAC 2000 (also TransCAD 2002)

Used inside Synopsys’ CoCentric System Studio to
generate control code

Outline

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1
C

D

s=2 s=1

if ((s0 & 3) == 1) {

if (S) {

s3 = 1; s2 = 1; s1 = 1;

} else

if (s1 >> 1)

s1 = 3;

else {

if ((s3 & 3) == 1) {

s3 = 2; t3 = L1;

} else {

t3 = L2;

}

Esterel Concurrent Sequential C code

Source CFG CFG

Translate every

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

Add Threads

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

Split at Pauses

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

s=2 s=1

Add Code Between Pauses

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B

C
D

s=2 s=1

Translate Second Thread

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C
D

s=2 s=1

Finished Translating

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C
D

s=2 s=1

Add Dependencies and Schedule

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C
D

s=2 s=1

Run First Node

R

1 s 2

A

B B

C C
D

s=2 s=1

R

Run First Part of Left Thread

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

Context Switch

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

Run Right Thread

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

Context Switch

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1

Finish Left Thread

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1
C

D

s=2 s=1

Completed Example

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1
C

D

s=2 s=1

ESUIF: An Esterel Compiler for
Research

My goal is to improve Esterel compilation technology

We still don’t have a technique that builds fast code
for large programs

No decent Esterel compiler available in source form

Being presented at SLAP 2002 (Grenoble, April)

ESUIF

New, open-source compiler being developed at Columbia

Based on SUIF 2 system from Stanford University

Much more modular: implemented as many little passes

Common database represents program throughout

SUIF 2 Database

Main component of the SUIF 2 system

User-customizable object-oriented database

Written in C++

Not highly efficient, but very flexible

SUIF 2 Database

Database schema written in their own “hoof” format

C++ implementation automatically generated

concrete MyClass {

int x;

}

⇒

class MyClass : public SuifObject

{

public:

int get_x();

void set_x(int the_value);

˜MyClass();

void print(...);

static const Lstring

get_class_name();

}

Three Intermediate Representations

AST-like representation from front end

Primitives: abort, emit, present, suspend, etc.

Lower-level “C-like” representation

Primitives: if-then-else, try, resume, parallel, etc.

C code

Primitives: if, goto, expressions

SUIF 2 includes a complete C schema

My New Intermediate
Representation

Intermediate Representation Goals

Linear, textual, imperative style fits the SUIF 2 philosophy

Gonthier’s IC format used in V3–V5 is graph-based and
difficult to visualize. Analysis requires depth-first search.

Straightforward translation into C code; simple semantics

IC format requires complicated depth-first search to
linearize. Handling of “completion codes” is subtle.

Compound statements express traps, preemption, and
concurrency

Tree structure present in IC, but must be rediscovered.

Intermediate Representation
var := expr

if (expr) { stmts } else { stmts }

Label:

goto Label

break n

continue

try { stmts } catch 2 { stmts } ...

resume { stmts } catch 1 { stmts } ...

parallel { resumes } catch 1 { stmts } ...

fork Label1, Label2, ...

join

Intermediate Representation
var := expr

if (expr) { stmts } else { stmts }

Label:

goto Label

Self-explanatory

Signals represented as variables.

Restrictions on where a goto may branch.

Intermediate Representation
break n

continue

try { stmts } catch 2 { stmts } ...

resume { stmts } catch 1 { stmts } ...

parallel { resumes } catch 1 { stmts } ...

Numerically-encoded “exceptions”

Based on Esterel’s completion codes

0=terminate 1=pause 2,3,. . . =exit

Implementing Exceptions

trap T1 in
exit T1

handle T1 do
c := 1

end

try {

break 2

} catch 2 {

c := 1

}

goto Catch2;

goto Catch0;

Catch2:

c = 1;

Catch0:

try becomes a few labels.

break becomes a goto.

Resume/Continue

abort

pause
pause

when A

resume {

break 1

break 1

} catch 1 {

break 1

if (!A) continue

}

goto E

C: switch (s) {

case 0: goto St0;

case 1: goto St1;

}

E: s = 0; goto Ca1; St0:

s = 1; goto Ca1; St1:

goto Ca0;

Ca1:

so = 0; goto Ca1o; St0o:

if (!A) goto C;

Ca0:

resume becomes a multi-way branch plus some labels.

continue sends control to the multi-way branch.

Resume/Continue

First cycle:

goto E

C: switch (s) {

case 0: goto St0;

case 1: goto St1;

}

E: s = 0; goto Ca1; St0:

s = 1; goto Ca1; St1:

goto Ca0;

Ca1:

so = 0; goto Ca1o;

St0o: if (!A) goto C;

Ca0:

Second cycle:

goto E

C: switch (s) {

case 0: goto St0;

case 1: goto St1;

}

E: s = 0; goto Ca1; St0:

s = 1; goto Ca1; St1:

goto Ca0;

Ca1:

so = 0; goto Ca1o;

St0o: if (!A) goto C;

Ca0:

Parallel and Exit

trap T1 in
trap T2 in

exit T1
||

exit T2

handle T2 do emit B end
handle T1 do emit A end

try {
try {

parallel {
resume {

break 3 }
resume {

break 2 }
} catch 1 {

break 1; continue }
} catch 2 { B := 1 }

} catch 3 { A := 1 }

Parallel

pause;
pause
||

pause

parallel {

resume {

break 1

break 1

}

resume {

break 1

}

} catch 1 {

break 1

continue

}

Parallel Behavior

parallel {

resume {

break 1

break 1

}

resume {

break 1

}

} catch 1 {

break 1

continue

}

parallel {

resume {

break 1

break 1

}

resume {

break 1

}

} catch 1 {

break 1

continue

}

A Minor Point on Completion Codes

Berry’s encoding reduces the exit code if it is not handled.

try {

break 5

} catch 2 { ... }

generates break 4 in Berry’s encoding. I treat it as
break 5.

I assign each trap its own completion code; they pass
unchanged.

Simpler semantics vs. the danger of larger codes.

Irrelevant in HW, probably not a problem for SW.

Future Work on HW & SW Synthesis

• HW/SW synthesis from control dependence

Clever concurrent representation produces efficient
hardware and facilitates “sequentializing” SW.

• SW synthesis by static unrolling of cyclic programs

Unrolling SW à la Bourdoncle coupled with constant
propagation should quickly execute cyclic programs.

• SW synthesis with dynamic event-based scheduling

Unrolling is expensive if done statically; a scheduler
can do it dynamically with little overhead.

Summary

Introduction to Esterel and Existing Compilers

Synchronous, Concurrent, Textual Language

Automata, Netlist, and Control-based compilers

My Earlier Compiler [DAC 2000, TransCAD 2002]

Translate to Concurrent CFG, schedule, then
synthesize Sequential CFG

New Compiler: ESUIF (work in progress [SLAP 2002])

Based on SUIF 2 infrastructure

Open-source, under development

Intermediate Representation

Future Work

