Deterministic Receptive Processes are Kahn Processes

Stephen A. Edwards & Olivier Tardieu Department of Computer Science, Columbia University www.cs.columbia.edu/~{sedwards,tardieu} {sedwards,tardieu}@cs.columbia.edu

Motivation

SHIM project: "Software/Hardware Integration Medium"

Want an asynchronous concurrent deterministic formalism for embedded systems.

I found two:

Kahn's process networks (1974)

Josephs's Deterministic Receptive Processes (2003)

Are they "the same"?

Deterministic Merge

h.

a

Each a or b input produces an o output ⇔
o The number of o's is the sum of the number of a's and b's.

	ϵ	aaaooo	abaooo	baaooo	bbaooo
	ao	aaoaoo	aboaoo	baoaoo	bboaoo
	bo	aaooao	aboo a o	baooao	bbooao
	aaoo	aoaaoo	aobaoo	boaaoo	bobaoo
$\dot{\mathbf{v}}$	aoao	aoaoao	aoboao	boaoao	boboao
	aboo				
	aobo	aabooo	abbooo	babooo	bbbooo
	baoo	aaoboo	aboboo	baoboo	bboboo
	boao	aaoobo	aboobo	baoobo	bboobo
	bboo	aoaboo	aobboo	boaboo	bobboo
	bobo	aoaobo	aobobo	boaobo	bobobo

Deterministic Receptive Processes

In Mark Josephs's formalism,

ϵ	← these traces are <i>failures</i> because the
ao	process fails to produce more outputs
bo	afterwards
aaoo	
aoao	
aboo	The set of failure traces characterizes
aobo	one of Josephs's deterministic receptive
baoo	processes.
boao	
bboo	
bobo	This process is deterministic and
	receptive according to Josephs

Josephs's Receptive Processes

Receptive Process Theory. Acta Informatica, 1992. **Process:** (I, O, F) $I \cap O = \emptyset$ input/output alphabets Set of failure traces: $F \subseteq (I \cup O)^*$ Divergences: $F \uparrow = \{s : \{t \in O^* : st \in F\} \text{ is infinite}\}$ "When an infinite sequence of outputs is possible" Traces: $\hat{F} = \{s : \exists t \in O^* : st \in F\}$

"When zero or more outputs are pending"

Receptive Process Axioms

$$\begin{split} s \in F \uparrow \Rightarrow st \in F \uparrow \\ F \uparrow \subseteq F \\ \epsilon \in \hat{F} \\ st \in \hat{F} \Rightarrow s \in \hat{F} \\ s \in \hat{F} \land t \in I^* \Rightarrow st \in \hat{F} \end{split}$$

Anything follows a divergence
Divergences are failures
Traces start from nothing
Traces prefix-closed
Input always possible = receptive

Nondeterministic Receptive Process

Problem: process can choose whether to output o or p.

Deterministic Receptive Processes

Josephs, An analysis of determinacy..., *ASYNC 2003*. Four additional rules: one about inputs, three about outputs.

$$(\forall v, w \, . \, x = vw \Rightarrow svi \notin F\uparrow) \land$$
$$i \in I \land sxiu \in F \quad \Rightarrow \quad sixu \in F$$

"An input that arrives early does not matter unless it causes divergence."

Deterministic Receptive Processes

 $\begin{array}{l} o \in O \ \land \ t \in (I \cup (O \setminus \{o\}))^* \ \land \\ so \in \hat{F} \ \land \ st \in F \setminus F^{\uparrow} \quad \Rightarrow \quad \mathsf{false} \\ o \in O \ \land \ t \in (I \cup (O \setminus \{o\}))^* \ \land \\ so \in \hat{F} \ \land \ st \in \hat{F} \quad \Rightarrow \quad sto \in \hat{F} \\ o \in O \ \land \ t \in (I \cup (O \setminus \{o\}))^* \ \land \\ so \in \hat{F} \ \land \ stou \in F \setminus F^{\uparrow} \quad \Rightarrow \quad sotu \in F \end{array}$

"If an output can occur now, it must be emitted before the process stops to wait for inputs."

"An output may always be delayed."

"Delaying an output does not affect long-term behavior."

Kahn's Networks

Alternating sequence of 0s and 1s along center channel

Emits a 0 then copies input to output

Kahn's Processes

"A Simple Language for Parallel Programming"

```
process f(in int u, in int v, out int w)
{
  int i; bool b = true;
 for (;;) {
    i = b? wait(u) : wait(v);
    printf("%i\n", i);
    send(i, w);
    b = !b;
                                 f
                                       W
```

Kahn's Formalism

Channels convey sequences of data values.

Sequences partially ordered: $aa \sqsubseteq aaa$, but $aa \not\sqsubseteq ab$.

Each process a function on finite and infinite sequences

$$f: D_1^{\omega} \times D_2^{\omega} \times \cdots \times D_n^{\omega} \to D^{\omega}$$

f is monotonic, $x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$, and continuous $f(\sqcup X) = \sqcup f(X)$.

Continuity guarantees the function of a system $F = (f_1, f_2, \dots, f_k)$ has a unique least fixed point F(X) = X. This is the (only) behavior of the system.

Deterministic Merge

As a Kahn proces	s, $a \rightarrow b \rightarrow b$	$\rightarrow 0$
$(\epsilon,\epsilon)=\epsilon$	$(a,\epsilon) = o$	$(aa,\epsilon) = oo$
$(\epsilon, b) = o$	(a,b) = oo	(aa,b) = ooo
$(\epsilon, bb) = oo$	(a,bb) = ooo	$(aa, bb) = oooo \cdots$
$(\epsilon, bbb) = ooo$	(a, bbb) = oooo	(aa, bbb) = oooooo
$(\epsilon, bbbb) = oooo$	(a, bbbb) = oooooo	(aa, bbbb) = oooooo

Clearly monotonic and continuous, hence deterministic. Cannot be described in Kahn's sequential language. A constructive proof that Deterministic Receptive Processes behave like Kahn processes

Projection

Projection selects a single event from a trace:

$$\epsilon \downarrow e = \epsilon$$

 $as \downarrow e = \begin{cases} a(s \downarrow e) & \text{if } a = e, \text{ and} \\ s \downarrow A & \text{otherwise.} \end{cases}$

 $i_1 i_2 o_1 o_2 i_1 o_2 o_1 i_2 i_1 o_1 o_2 \downarrow i_1 = i_1 i_1 i_1$ $i_1 i_2 o_1 o_2 i_1 o_2 o_1 i_2 i_1 o_1 o_2 \downarrow i_2 = i_2 i_2$

Input and Output Functions

$$\mathcal{I}(f) = (f \downarrow i_1, f \downarrow i_2, \dots, f \downarrow i_p)$$
$$\mathcal{O}(f) = (f \downarrow o_1, f \downarrow o_2, \dots, f \downarrow o_q)$$

Example: $f = i_1 i_2 o_1 o_2 i_1 o_2 o_1 i_2 i_1 o_1 o_2$ $\mathcal{I}(f) = (i_1 i_1 i_1, i_2 i_2)$ $\mathcal{O}(f) = (o_1 o_1 o_1, o_2 o_2 o_2)$

The Central Lemma

The input/output relationship of a deterministic receptive process P = (I, O, F) with no divergence is monotonic, i.e., for $f_1, f_2 \in F$, if $\mathcal{I}(f_1) \sqsubseteq \mathcal{I}(f_2)$ then $\mathcal{O}(f_1) \sqsubseteq \mathcal{O}(f_2)$. **Proof** by contradiction. Assume $\mathcal{I}(f_1) \sqsubseteq \mathcal{I}(f_2)$ but $\mathcal{O}(f_1) \nvDash \mathcal{O}(f_2)$.

Reorder the events in f_1 and f_2 so that inputs appear first and the two share a common prefix.

There must be at least one more output that occurs less often in f_2 and hence in the reordered traces, but this contradicts the axiom of compulsory emission. QED.

An Illustration

 $f_1 = i_1 \overline{o_1 i_2 o_2 i_2 o_2 i_1}$ $f_2 = i_1 i_2 i_2 o_2 \overline{i_1 o_2 i_1 i_2}$ $\mathcal{I}(f_1) = (i_1 i_1, i_2) \qquad \sqsubseteq \quad \mathcal{I}(f_2) = (i_1 i_1 i_1, i_2 i_2 i_2)$ $\mathcal{O}(f_1) = (o_1, o_2 o_2) \qquad \not\sqsubseteq \qquad \mathcal{O}(f_2) = (\epsilon, o_2 o_2)$ Move inputs earlier (safe because no divergence) $f_1' = i_1 i_1 i_2 i_2 o_1 o_2 o_2$ Must be emitted in f_2' $f'_2 = i_1 i_1 i_2 i_2 i_1 i_2 o_2 o_2$

 f'_2 cannot be a failure because the output o_1 must eventually be emitted. Contradiction.

Technical point

Josephs only talks about finite traces

Kahn needs infinite traces because he takes limits

Unsurprising result: define the behavior of Josephs's process as being its limit and everything works.

Conclusion

Kahn and Josephs deterministic for roughly same reason Big difference: Josephs models "don't-cares" as divergences—no obvious analog in Kahn's model Josephs's axioms more complex, but more operational Not in the paper: we have found a more fundamental definition that makes Josephs's axioms lemmas. Ongoing work: developing the SHIM model and system built around a Kahn/Josephs-like model of computation.