
The Challenges of
Hardware Synthesis from

C-like Languages
Stephen A. Edwards

Department of Computer Science,
Columbia University

www.cs.columbia.edu/˜sedwards

sedwards@cs.columbia.edu

Why C?

C model Verilog/VHDL GDS II

“A single language would facilitate the step-by-step refinement of a
system design down to its components”

[SystemC: Liao et al. 1997]

“All examples contributed by industry were written in the C
programming language” [SpecC: Gajski et al., 2000]

“If you are familiar with conventional C you will recognize nearly all
the other features.” [Handel-C: Celoxica, 2003]

Why Hardware?

vs.

Efficiency: Power, speed, or cost.

This talk assumes we have decided to produce hardware.

Genesis: BCPL begat B begat C

BCPL: Martin Richards, Cambridge, 1967

Typeless: everything a machine word

Memory: undifferentiated array of words

Then, processors mostly word-addressed
LET try(ld,row,rd) BE TEST row=all

THEN count := count + 1

ELSE $(

LET poss = all & NOT (ld | row | rd)

UNTIL poss=0 DO $(

LET p = poss & -poss

poss := poss - p

try(ld+p << 1, row+p, rd+p >> 1)

$)

$)

Part of the N-queens
problems implemented
in BCPL

C History

Developed 1969–1973 along with Unix

Due mostly to Dennis Ritchie

Designed for systems programming:
operating systems, utility programs, compilers

PDP-11/20 (c. 1970) 24K of core (12K for kernel)

Euclid’s Algorithm on the PDP-11

int gcd(int m, int n)

{

int r;

while ((r = m%n) != 0) {

m = n;

n = r;

}

return n;

}

.globl _gcd

.text

_gcd:

jsr r5, rsave

L2: mov 4(r5), r1

sxt r0

div 6(r5), r0

mov r1, -10(r5)

jeq L3

mov 6(r5), 4(r5)

mov -10(r5), 6(r5)

jbr L2

L3: mov 6(r5), r0

jbr L1

L1: jmp rretrn

The Five Big Challenges

Concurrency Timing

Types Communication

Meta-Data

Traditional C Concurrency: Pthreads
pthread_mutex_t mymutex; /* Mutual Exclusion Variable */

int myglobal = 0; /* Global variable */

pthread_t thread[3]; /* Information about threads */

void *myThread(void *arg) {

pthread_mutex_lock(&mymutex); /* Get the lock */

++myglobal; /* Update shared variable */

pthread_mutex_unlock(&mymutex); /* Release the lock */

pthread_exit((void*) 0);

}

void count_to_three() {

int i, status;

pthread_attr_t attr;

pthread_mutex_init(&mymutex, NULL);

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

for (i = 0 ; i < 3 ; i++)

pthread_create(&thread[i], &attr, myThread, (void *)i);

for (i = 0 ; i < 3 ; i++)

pthread_join(thread[i], (void **)&status);

}

Approach 1: Add Parallel Constructs

HardwareC, SystemC, Ocapi, Handel-C, SpecC, Bach C

This is C?

/* Handel-C code for a four-place queue */

void main(chan (in) c4 : 8,

chan (out) c0 : 8)

{

int d0, d1, d2, d3;

chan c1, c2, c3;

void e0() { while (1) { c1 ? d0; c0 ! d0; } }

void e1() { while (1) { c2 ? d1; c1 ! d1; } }

void e2() { while (1) { c3 ? d2; c2 ! d2; } }

void e3() { while (1) { c4 ? d3; c3 ! d3; } }

par {

e0(); e1(); e2(); e3();

}

}

2: Let Compiler Find Concurrency

Cones, Transmogrifier C, C2Verilog, CASH

Compiler unrolls loops

Fundamental limits on how
much concurrency could ever
be found [David Wall 91, 94]

This problem: a Holy
Grail of Computer
Science

/* CONES code counts ones */

INPUTS: IN[5];

OUTPUTS: OUT[3];

rd53() {

int count, i;

count = 0;

for (i = 0 ; i < 5 ; i++)

if (IN[i] == 1)

count = count + 1;

for (i = 0 ; i < 3 ; i++) {

OUT[i] = count & 0x01;

count = count >> 1;

}

}

Timing in Algorithmic Languages

Algorithm: “A sequence of steps designed to solve a problem.”

Powerful abstraction; inadequate for hardware

Approach 1: Explicit Clocks

Ocapi, SpecC, Cones, SystemC

Quite a departure

/* SystemC code for a simple protocol */

while(index < 16) {

data_req.write(true);

wait_until(data_valid.delayed() == true);

tmp_real = in_real.read();

tmp_imag = in_imag.read();

real[index] = tmp_real;

imag[index] = tmp_imag;

index++;

data_req.write(false);

wait();

}

Approach 2: Constraints

HardwareC, C2Verilog

An awkward way to describe behavior

/* Constraints in HardwareC */

constraint maxtime from label1 to label3 = 4 cycles;
constraint delay of label2 = 2 cycles;

label1:
Y = read(X);

Y = Y + 1;
label2:

Y = Y * Q;

label3:
send(channelA, Y);

Approach 3: Rules Imply Clocks

Handel-C (assignment = clock),
Transmogrifier C (loop iteration = clock),
C2Verilog (complex)

/* Handel-C Transmogrifier C */
for (i = 0 ; i < 8 ; i++) { /* 9 8 */

a[i] = c[i]; /* 8 0 */
b[i] = d[i] || f[i]; /* 8 0 */

}

Unwieldy

Types

BCPL: everything is a word (word-addressed memory)

C: chars, shorts, ints, longs, floats, doubles (PDP-11’s
byte-addressed memory)

Bit-level granularity natural for hardware.

Approach 1: Annotations/External

C2Verilog, Transmogrifier C

/* Selecting bit widths in Transmogrifier C */

#pragma intbits 4

int xval, yval;

#pragma intbits 1

int ready;

Awkward. C2Verilog had a GUI for adding annotations.

Approach 2: Add Hardware Types

HardwareC, Handel-C, Bach C, SpecC

/* Bach C hardware data types */

int#24 a = (101*100)/2;

unsigned#16 b = 1;

while (a)

a -= b++;

A big change for C programmers

Approach 3: Use C++’s Type System

SystemC, Ocapi
/* Hardware data types in SystemC */

struct fft: sc_module {

sc_in<sc_int<16> > in_real;

sc_in<sc_int<16> > in_imag;

sc_in<bool> data_valid;

sc_in<bool> data_ack;

sc_out<sc_int<16> > out_real;

sc_out<sc_int<16> > out_imag;

sc_out<bool> data_req;

sc_out<bool> data_ready;

sc_in_clk CLK;

SC_CTOR(fft) {

SC_CTHREAD(entry, CLK.pos());

}

void entry();

};

Communication

Software Hardware

Communication: Pointers

Assumes a monolithic memory model.

Semeria and De Micheli [ICCAD 2001] used pointer
analysis to break memory into separate spaces.

Not implemented in any commercial compiler.

Approach 1: Preserve the C model

CASH, Handel-C, C2Verilog

/* Source C code */

int *p;

struct { int i; short sh[2]; } s;

int b[5];

if (...)

p = &s.i;

else

p = &b[2];

p = p + 1;

out = *p;

P can point into s or into b

/* After Semeria et al. */

int pp;

short sh[4];

int b[5];

if (...)

pp = 0 << 16 | 0;

else

pp = 1 << 16 | 8;

pp = pp + 4;

if (pp >> 16 == 0)

out = sh[pp&0xffff >> 1] << 16 |

sh[pp&0xffff >> 1 + 1];

else

out = b[pp&0xffff >> 2];

Approach 2: Use Other Primitives

HardwareC (rendezvous)
Handel-C (rendezvous)
Bach C (rendezvous)
SpecC (variety)
SystemC (variety)

/* Handel-C serial-to-parallel */

while (1) {

bitstream ? bits_0;

bitstream ? bits_1;

bitstream ? bits_2;

bitstream ? bits_3;

bitstream ? bits_4;

bitstream ? bits_5;

bitstream ? bits_6;

bitstream ? bits_7;

STDOUT ! bits_0 @ bits_1 @

bits_2 @ bits_3 @

bits_4 @ bits_5 @

bits_6 @ bits_7;

}

Meta-Data

int g[15];

a = b + c;

d = e + f;

How to implement the “+”?

How many adders?

How should the g array be implemented?

How do you tell the synthesizer what you want?

Meta-Data Approaches

Figure 9. A scheduling and binding result of SRA

The branch node (if node) and loop node (for node) are
shown in Figure 11.

5.2. Clock Selection and resource allocation

The maximum execution time of a design can be de-
fined as product of the clock period used in design and the
maximum number of clock period used in the design and
maximum number of clock cycles. Hence to optimize the
performance of a design, it is important to select the clock
period wisely, as well as to minimize the number of clock
cycles [JGC96]. Moreover, the number of clock cycles re-
quired to finish all operations in a design depends on the
clock period. Therefore a bad choice of the clock period
could severely affect the performance of the design. In our
methodology, the clock selection is done by user.

Resource allocation is also important step in RTL syn-
thesis. The number of resources can be determined by auto-
matic tool or user [GDLW92]. In our RTL design method-
ology, resource allocation is performed by user.

5.3. Scheduling and binding algorithm

we describe simultaneous scheduling and binding algo-
rithm which solves scheduling and binding problems to-
gether. This algorithm is greedy but simple and easy to
implement. However, our methodology are independent of

scheduling and binding algorithms and can use any other
algorithms such as force-directed heuristic as well.

5.3.1 Problem Definition

Given:

1. A behavior represented by state transition graph,
STG(S, T), where S is state in FSMD and T is state
transition among states.

2. Each state S contains hierarchical control/data flow
graph, CDFG(V, E), where V is a set of vertices rep-
resenting operations, storages, buses, and hierarchical
nodes such as branch and loop, and E is dependency
between nodes.

3. A component library containing functional units, stor-
age units and buses characterized by type, area, delay,
pipeline states and so on. In addition, storage units
have the number of read/write ports.

4. clock period and resource allocation, such as number
of functional units, storage units, buses and read/write
ports of storage units.

Determine:

1. control step of each node in a behavior

9

instance counter value1, value2;

instance fastcounter value3;

value1(...); /* first counter */

value1(...); /* first counter */

value2(...); /* second counter */

value3(...); /* third fastcounter */

value2(...); /* second counter */

SpecC GUI Hardware C

Summary

Concurrency Explicit or compiler’s job

Timing Explicit, constraints, or rules

Types Annotations, additional, C++

Communication C-like or additional

Meta-Data GUI or annotations

The next language should have...

• High-level abstractions that address complexity

Concurrency + communication, timing control,
hardware types, and support for refinement

• Constructs that match what designers want

Datapaths, controllers, memories, busses, hierarchy

• Semantics with an efficient translation into hardware

• Semantics that facilitate very efficient simulation

Will it be like C? At most only superficially.

