High-level Synthesis from the Synchronous Language Esterel

Stephen A. Edwards

Department of Computer Science
Columbia University
www.cs.columbia.edu/ॅsedwards

Three Ideas for Esterel

Controller synthesis from Program Dependence Graph

- Control flow represented concurrently [Ferrante et al. 1987]
- Construction usually $O(n)$
[Cytron et al. 1991]
- Trivial, efficient translation into circuits

High-level State Assignment

- Optimizers need reachable states [Sentovich et al. 1997]
- High-level structure partitions, simplifies state assignment

Don't-Care Extraction

- Control-flow relationships easy to analyze
- Controllability don't-cares

An Example

sustain $\mathrm{R} \longleftarrow$ Make R present forever

An Example

weak abort \longleftarrow Make R present until A is sustain R when immediate A;

An Example

An Example

> loop «_ Infinite Loop
> await I;
> weak abort
> sustain R
> when immediate A;
> emit O
> end

An Example

```
    loop
        await I;
        weak abort
            sustain R
        when immediate A;
        emit O
    end
|| Run Concurrently
    loop
        pause; pause;
        present R then
        emit A
    end
    end
```


An Example

```
every S do
    loop Restart on S
        await I;
        weak abort
            sustain R
            when immediate A;
            emit O
    end
||
    loop
        pause; pause;
        present R then
        emit A
        end
    end
end
```


An Example

An Example

every S do
loop
await I;
weak abort
sustain R
when immediate A;
pause
end
II
loop
pause; pause;
present R then
emit A
end
end
end

Esterel:
[Berry 1992]
Good for hierarchical FSMs
Cycle-based semantics like SystemC

High-level control constructs (exceptions, preemption)

Weak at data manipulation (e.g., no types, pointers)

Hardware Esterel variant proposed to address this

Translation to CCFG

every S do
loop await I; weak abort sustain R when immediate A; emit O
end

loop
pause; pause; present R then emit A
end
end
end

Translation to PDG

Translation to Circuitry

Want more?

See the paper

http://www.cs.columbia.edu/~sedwards

