
High-level Synthesis from the
Synchronous Language Esterel

Stephen A. Edwards

Department of Computer Science
Columbia University

www.cs.columbia.edu/˜sedwards

Three Ideas for Esterel

Controller synthesis from Program Dependence Graph

• Control flow represented concurrently [Ferrante et al. 1987]

• Construction usually O(n) [Cytron et al. 1991]

• Trivial, efficient translation into circuits

High-level State Assignment

• Optimizers need reachable states [Sentovich et al. 1997]

• High-level structure partitions, simplifies state assignment

Don’t-Care Extraction

• Control-flow relationships easy to analyze

• Controllability don’t-cares

An Example

sustain R Make R present forever

An Example

weak abort Make R present until A is
sustain R

when immediate A;

An Example

await I;

Wait for next cycle where I is present

weak abort
sustain R

when immediate A;
emit O Make signal O present this cycle

An Example

loop Infinite Loop
await I;
weak abort

sustain R
when immediate A;
emit O

end

An Example

loop
await I;
weak abort

sustain R
when immediate A;
emit O

end
|| Run Concurrently

loop
pause; pause;
present R then

emit A
end

end

An Example

every S do

Restart on Sloop
await I;
weak abort

sustain R
when immediate A;
emit O

end
||

loop
pause; pause;
present R then

emit A
end

end
end

An Example

every S do
loop

await I;
weak abort

sustain R
when immediate A;
pause

end
|| Same-cycle bidirectional communication

loop
pause; pause;
present R then

emit A
end

end
end

An Example

every S do
loop

await I;
weak abort

sustain R
when immediate A;
pause

end
||

loop
pause; pause;
present R then

emit A
end

end
end

Esterel: [Berry 1992]

Good for hierarchical FSMs

Cycle-based semantics like
SystemC

High-level control constructs
(exceptions, preemption)

Weak at data manipulation
(e.g., no types, pointers)

Hardware Esterel variant
proposed to address this

Translation to CCFG

every S do
loop

await I;
weak abort

sustain R
when immediate A;
emit O

end
||

loop
pause; pause;
present R then

emit A
end

end
end

S

s2 s3

I

R

R A A

1 1 2

O s3=1 s3=2

s2=0 s2=0

s2=1 s2=2 s2=1 s3=1

Translation to PDG
S

s2 s3

I

R

R A A

1 1 2

O s3=1 s3=2

s2=0 s2=0

s2=1 s2=2 s2=1 s3=1

S

s2=1 s3=1

s2 s3

s2=0 I s3=2

s2=1 R s3=1

A

R 1 A

1 2 s2=2

O s2=0

Translation to Circuitry

S

s2=1 s3=1

s2 s3

s2=0 I s3=2

s2=1 R s3=1

A

R 1 A

1 2 s2=2

O s2=0

s2=1 s3=1

s2=0 s3=2

s2=1 s3=1

A

R 1

1 2 s2=2

O s2=0

Want more?

See the paper

http://www.cs.columbia.edu/˜sedwards

