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Controllers are reactive systems

� Maintain an ongoing dialog with their
environment—listen, don’t terminate

� When things happen as important as what
happens

� Discrete-valued, time-varying

� Examples:

– Systems with user interfaces
� Digital watches� CD players

– Real-time controllers
� Anti-lock braking systems� Industrial process controllers
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Our systems: Networks of
concurrently executing modules
communicating synchronously

Opaque, zero-delay modules
compute functions

Instantaneous, bidirectional
communication

Single driver, multiple receiver “wires” (no
buffering)

Time

Every module computes once each instant

Nothing happens between instants
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Outline

� Defining behavior in an instant:
A fixed point

� Ensuring determinism:
Monotonic module functions

� Efficient software implementation:
Iterating to a fixed point

March 14, 1996 Session 3A—System-Level Design and Specification 4



INDUSTRIAL LIAISON PROGRAM UNIVERSITY OF CALIFORNIA, BERKELEY

Zero delay, Determinism,
Heterogeneity, and Cycles
together: A challenge.

Most schemes relax one of these requirements.

A B

Which goes first?
Need an
order-invariant
semantics

Contradictory!
Need to attach
meaning to such
systems without
looking inside
modules
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Fixed-point semantics are natural
for synchronous specifications
with cycles

Why a fixed point?

Self-reference:
The essence of a cycle

f � xt ��� xt

System function Wire values at time t

(composition of (zero delay)

module functions)

fixed point � 	 stable state

determinism � 	 unique solution
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Two restrictions make these
systems deterministic

Restriction 1:
Partially-Ordered

Wire Values

Restriction 2:
Monotonic

Module Functions

Unique Least
Fixed Point
Theorem

Always-Defined
Deterministic

System Behavior
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Restriction 1: Partially ordered
wire values

Values along an upward path grow more defined.
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“Undefined”
element

More Defined

Less Defined

Incomparable
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0


 

vector-valued extension

Formally, x � y if y is at least as defined as x.
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Restriction 2: Monotonic module
functions

A monotonic function never gives a less defined
or incomparable result.



f � 
 �

f � f � 
 ���
f � f � f � 
 �����

f � f � f � f � 
 �������

Formally, x � y implies f � x � � f � y � .
Closed under composition: if f � x � and g � x � are
monotonic, then f � g � x ��� is.

Implication: Composing monotonic functions
builds a monotonic network.
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The least fixed point theorem
ensures determinism

Well-known theorem: A monotonic function on a
partial order has a unique least fixed point.




Behavior in an instant: The least
fixed point of the (monotonic) system
function

Implications:

� unique

� always defined

� quickly computed

� heterogeneous
(only need monotonicity)
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Meeting the conditions for
determinism is easy

� Partially-ordered wire values

Any set  a1 � a2 ��������� an ��������� can easily be
“lifted” to give a flat partial order:

a1 a2 a3 ����� an �����



� Monotonic module functions

Ways to ensure monotonicity:

– Strict functions are monotonic

– Most functions in “X-valued simulation”
are monotonic

– The composition of monotonic functions is
monotonic
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Many languages use strict
functions, which are monotonic

A strict function:

g � ������� 
 �������� ��� �
input wires

��� � 
 ��������� 
� ��� �
output wires

�

Outside:
A strict
monotonic
function

Inside:
Simple
“function call”
semantics

Common languages with strict functions:

� C/C++

� Synchronous Dataflow (SDF)

Danger: Cycles of strict functions
deadlock—fixed point is all



—need some

non-strict functions.
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The fixed point theorem suggests
a simulation algorithm


 � f � 
 � � f � f � 
 ��� � ����� � LFP � LFP � �����
For each instant,

1. Start with all wires at



2. Evaluate all module functions (in some order)

3. If any change their outputs, repeat Step 2

f0 a
f1 b

f2 c

� a � b � c � � � 
 � 
 � 
 �
f0 � 
 � 
 � 
 � � � 0 � 
 � 
 �
f1 � 0 � 
 � 
 � � � 0 � 1 � 
 �
f2 � 0 � 1 � 
 � � � 0 � 1 � 0 �

f2 � f1 � f0 � 0 � 1 � 0 ����� � � 0 � 1 � 0 �
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Iterating to a fixed point is
efficient and predictable


 � f � 
 � � f � f � 
 ��� � ����� � LFP � LFP � �����




Height

A simple bound:

� Height is linear in the
number of wires

� Each module evaluated
once per step

O � W � M � module evaluations per
instant

Can be scheduled statically: module evaluation
order fixed at compile-time.

No wire tests required: just make iterations =
height.
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Many optimizations are possible

2

1

3

4

� Evaluate strongly-connected components in
a topological order

� Form reactive clusters and bypass idle ones

� Cache the more-expensive-to-compute
functions
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Summary

� A way to specify synchronous controllers
heterogeneously

Synchronous = Zero Delay
Heterogeneous = Modules are Opaque

� Behavior defined as a fixed point

Fixed points natural for describing
cycles

� Determinism through monotonic functions on
partial orders

Least fixed point theorem ensures
unique behavior always defined

� Iterating to a fixed point efficient and
predictable

Statically schedulable
O � W � M � worst-case execution time
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