
System-on-a-chip and the Coming
Design Revolution

Stephen A. Edwards

Department of Computer Science,
Columbia University

www.cs.columbia.edu/˜sedwards

sedwards@cs.columbia.edu

1918 Sears Roebuck Catalog

About $100 in today’s dollars.

From Donald Norman, The Invisible Computer, 1998.

What happened to Home Motors?

Motors became cheap enough to embed in any appliance
that needed them.

How many motors
do you own?

2000 MacMall Catalog

How many computers do you own?

What will the SoCs of the future be?

Hint:

Hidden Computers

Casio Nokia 7110 Sony
Camera Browser Playstation 2
Watch Phone

Philips Philips
DVD Player TiVo Recorder

Transistor Cost Continues
Plummeting

Each Pentium sold for about $600 initially.

Source: Intel

Computers’ Changing Role

Environment and humans
subservient to computer

Simple peripherals

Computers subservient to
humans and the
environment

Complex peripherals

Embedded System Challenges

Real-time Deadlines

Embedded System Challenges

Complexity

Software complexity growing

Size of Typical Embedded System

1985 13 kLOC

1989 21 kLOC ↓ 44 % per year

1998 1 MLOC

2000 2 MLOC

2008 16 MLOC ≈ Windows NT 4.0

2010 32 MLOC ≈ Windows 2000

Source: “ESP: A 10-Year Retrospective,” Embedded Systems Programming,

November 1998

Written in stone-age languages

“Which of the following programming languages have you
used for embedded systems in the last 12 months?”

C 81%

Assembly 70%

C++ 39%

Visual Basic 16%

Java 7%

Source: “ESP: A 10-Year Retrospective,” Embedded Systems Programming,

November 1998

Embedded System Challenges

Concurrency

Existing Techniques

...aren’t up to the task.

• Existing multi-threaded concurrency models

...are completely unstructured

The “goto” of control

• Most real-time scheduling

...ignores communication aspects

We need some alternatives!

An Alternative: Esterel

Domain-specific language for safety-critical, real-time
systems.

Uses a synchronous model of time that is deterministic
and provides precise control over time.

Timing verification becomes checking a single
worst-case-execution-time bound.

Timing

Java
class PClock
implements Runnable {
public void run() {
for (;;) {
java.util.Date now =

new java.util.Date();
System.out.
println(now.toString());

try {
Thread.currentThread().

sleep(1000);
} catch (IntExcept e) {}

}
}

}
public class Clock {

public static void
main(String args[]) {
Thread t =

new Thread(new PClock());
t.start();

}
}

$ java Clock
Sat Sep 14 13:04:27 EDT 2002
Sat Sep 14 13:04:29 EDT 2002 A Leap Second?
Sat Sep 14 13:04:30 EDT 2002
Sat Sep 14 13:04:31 EDT 2002

Esterel
every 1000 MS do

emit SECOND

end

Just works

An Example

emit B;
Force signal present in this cycle

present C then Make D present if C is
emit D end;

An Example

await A;
Wait for next cycle where A is present

emit B;
present C then

emit D end;
pause

Wait for next cycle

An Example

loop Infinite Loop
await A;
emit B;
present C then

emit D end;
pause

end

An Example

loop
await A;
emit B;
present C then

emit D end;
pause

end
|| Run Concurrently

loop
present B then

emit C end;
pause

end

An Example

every R do

Restart on R
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

An Example

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
|| Same-cycle bidirectional communication

loop
present B then

emit C end;
pause

end
end

An Example

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

Good for hierarchical FSMs

Bad at manipulating data

Hardware Esterel variant
proposed to address this

Translate every

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

Add Threads

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

Split at Pauses

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

s=2 s=1

Add Code Between Pauses

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B

C
D

s=2 s=1

Translate Second Thread

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C
D

s=2 s=1

Finished Translating

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C
D

s=2 s=1

Add Dependencies and Schedule

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C
D

s=2 s=1

Run First Node

R

1 s 2

A

B B

C C
D

s=2 s=1

R

Run First Part of Left Thread

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

Context Switch

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

Run Right Thread

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

Context Switch

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1

Finish Left Thread

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1
C

D

s=2 s=1

Completed Example

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1
C

D

s=2 s=1

Generated Code

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1
C

D

s=2 s=1

if (!R) {
if (s == 1 && A) {

B = 1;
t = 0;

} else {
t = 1;

}
if (B) C = 1;
if (t == 0) {

if (C) D = 1;
s = 2;

} else {
s = 1

}
}

Summary

Plummeting transistor cost is making it practical to put
more, smaller computer systems everwhere.

Implemented with SoC technology, these embedded
systems will be dominated by software.

Embedded system challenges:

• Real-time issues

• Concurrency

• Software complexity and reliability

Summary

Esterel and the synchronous paradigm solve some
problems

• Synchronous model provides deterministic
concurrency

• Finite state permits automatic model checking

• Execution time verification provides timing assurance

• Efficient compilation scheme eliminates OS overhead

